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ABSTRACT

Spectral audio denoising methods usually make use of the magni-
tudes of a time-frequency representation of the signal. However, if
the time-frequency frame consists of quadrature pairs of atoms (as
in the short-time Fourier transform), then the phases of the coeffi-
cients also follow a predictable pattern, for which simple models are
viable. In this paper, we propose a scheme that takes into account
the phase information of the signals for the audio denoising prob-
lem. The scheme requires to minimize a cost function composed of
a diagonally weighted quadrature data term and a fused-lasso type
penalty. We formulate the problem as a saddle point search problem
and propose an algorithm that numerically finds the solution. Based
on the optimality conditions of the problem, we present a guideline
on how to select the parameters of the problem. We discuss the per-
formance and the influence of the parameters through experiments.

Index Terms— Audio denoising, non-negative garrote, total
variation, fused lasso, audio phase.

1. INTRODUCTION

Spectral audio denoising methods usually modify the coefficient
magnitudes of a time-frequency frame, even if the frame employs
quadrature pairs of atoms, as in the short-time Fourier transform
(STFT) – see e.g. [11]. This can be attributed to the fact that, al-
though the magnitudes of successive time-frequency samples (for
fixed frequency) exhibit high correlation, the correlation between the
phases is low [11]. Nevertheless, the phases of the coefficients also
follow a predictable pattern, for which simple models are viable. In
this paper, we propose a scheme for audio denoising, that takes into
account both the phase and the magnitude of the time-frequency
coefficients. The proposed formulation requires the minimization of
a convex cost function that contains a diagonally weighted quadratic
data term and a fused-lasso type penalty [24], where the latter is
composed of the sum of a total variation term and an `1 penalty.

Effective noise removal can be achieved by shrinking / thresh-
olding the spectrogram magnitudes [11]. Following this modifica-
tion on the magnitudes, one adds back the phase of the noisy signal
to reconstruct the denoised signal. Using the noisy signal’s phase is
not without motivation – it is shown in [14] that the expected value
of the noisy phase is equal to the phase of the clean signal (unlike the
case for the magnitude). In methods that modify the spectrogram, if
the time-frequency coefficients are treated independently (e.g. as in
the spectral subtraction method [5]), the denoised signal suffers from
a phenomenon called musical noise, due to the existence of isolated
time-frequency atoms after denoising [8]. Appearance of isolated
time-frequency components can be prevented or reduced by taking
into account the behavior of the neighboring time-frequency atoms
[14, 8] or working in time-frequency blocks of atoms, rather than
individual atoms [26] – see also [18, 21, 3, 19, 22, 10] for recent
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work in this context. The reason for this is that the time-frequency
distribution of audio follows predictable patterns with well-formed
groups. This is especially easy to see if one observes just the mag-
nitudes – at a particular band, whenever there is some activity, the
magnitude varies smoothly over time and this behavior does not de-
pend on the exact center frequency of the component under consider-
ation. On the other hand, the phases of the coefficients may change
rapidly – the coefficients gain a certain amount of phase, depend-
ing on the center frequency of the component, as one traverses the
subband (see [4] for a discussion on how to construct a prior for au-
dio signals, based on this observation). Although this gain in phase
depends on the (unknown) center frequency of the component, it is
roughly constant, which forms a key observation for the formulation
in this paper.

We argue that the observation about the predictability of the
phase can be used along with the magnitudes of the time-frequency
coefficients to devise a denoising scheme that does not suffer from
musical noise. Specifically, based on a simple model of audio, we
propose a convex minimization problem, the solution of which deter-
mines the denoised estimate in Section 2. We also provide a guide-
line on the selection of the parameters of the formulation in this sec-
tion. We present an algorithm that solves the formulation based on
a saddle-point interpretation of the minimization problem, in Sec-
tion 3. We demonstrate the utility of the method on real audio sig-
nals and discuss the how the parameters of the formulation affect the
denoised estimate in Section 4.

2. PROBLEM FORMULATION

In this section, we describe and discuss the proposed formulation
that uses the phase information of the STFT coefficients. We start
with an observation on the phases, based on a simple model for au-
dio signals. Following this, we present a formulation that requires
the solution of a convex minization problem. The selection of the
parameters used in the formulation and the relation of the formula-
tion with existing work are also discussed briefly.

Notation for the STFT

We use the following definition for the STFT. Let g(k) denote a
smooth finite-support discrete-time window function. Let S denote
the number of subbands used in the STFT and set θl = 2πl/S for l
an integer in [0, S−1]. Using g(k), we define the bandpass functions
gl(k) = g(k) exp(i θl k). Finally, let T denote the hop-size for the
STFT. Under these definitions, X(l, j), the STFT of a discrete-time
function x(k), is defined as

X(l, j) = 〈x(·), gl(· − j T )〉 (1a)

=
∑
k

x(k) g∗l (k − j T ). (1b)



2.1. A Simple Model for Audio Signals

We model the audio signal as a linear combination of sinusoids, each
of which is weighted by a piecewise-constant weight function. That
is, we assume that the signal of interest is of the form

x(k) =
∑
m

rm(k) exp(i ωmk). (2)

Here, rm(k) denotes the piecewise-constant weight function for the
mth component. We refer to [20, 23] for more detailed discussions
of sinusoidal models.

Now, let X denote the STFT of x(k) and ωm ≈ θl for some
(m, l) pair. Moreover, suppose that rm(k) is non-zero and constant
in the support of gl

(
k − (j + t)T

)
for t = 0, 1, 2, . . .K. In that

case, we will have

X(l, j) ≈ exp
(
−i ωm T t

)
X(l, j + t) (3)

for t = 0, 1, 2, . . .K. Observe that if we knew the value of ωm, we
could fairly predict X(j + t, l) from X(j, l), for t = 0, 1, 2, . . .K.
Unfortunately, in general, we do not expect to have knowledge of
ωm’s. Nevertheless, in [4], we argued that if N is sufficiently large,
then |ωm − θl| can be made arbitrarily small for a certain l. In this
case, we can predict the value of X(j + t, l) using X(j, l) and a
phase update term that depends only on θl. This, in turn, leads to
a simple prior that can be used as a regularizer in audio restoration
formulations. However, we also demonstrated in [4] that even if
|ωm − θl| is small, the same sinusoidal component leaks in neigh-
boring channels (e.g. the channels indexed by ‘l±1’) and one needs
the value of ωm in order to predict the value of X in those leakage
channels (see the discussion in Section 2 of [4]). Therefore, in prac-
tice, we either need to estimate ωm’s or we need to find a prediction
scheme that does not rely on the knowledge of ωm’s. We investigate
the feasibility of the latter choice in this paper.

Notice now that, although the ratio

X(l, j)

X(l, j + 1)
≈ exp(−i ωm T ) (4)

depends on the unknown value ωm, it remains constant if we replace
‘j’ with ‘j + t’ on the left hand side, for t = 1, 2, . . . ,K. Observe
also that this ratio has unit magnitude. It follows that if we define

X̂(l, j) = |X(l, j)| X(l, j + 1)

|X(l, j + 1)| , (5)

then
X(l, j) ≈ X̂(l, j)αl(j) (6)

for some piecewise constant function αl(j). Note also that further
errors in this approximate equality may arise because the constant
pieces of rm(k) may have partial overlaps with the supports of the
window function g(n − jT ). Notice also that αl(j)’s can be taken
as zero for a significant portion of the spectrogram since the original
spectrogram is expected to be sparse. In summary, αl(j) is expected
to be

(i) piecewise constant with magnitude less than unity,

(ii) sparse.

2.2. Problem Formulation

Suppose now that we observe the noisy signal y = x+ n. Also, let
Y denote the STFT coefficients. Similarly as above, we define

Ŷ (l, j) = |Y (l, j)| Y (l, j + 1)

|Y (l, j + 1)| . (7)

Under this definition, we propose to estimate X from Y as,

X̂ = Ŷ α̂, (8)

where

α̂ = argmin
|α(l,j)|≤1

1

2
‖Y − Ŷ α‖22 + λ1 TV(α) + λ2 ‖α‖1. (9)

Here, we define the total variation functional as TV(α) = ‖Dα‖1,
where ‘D’ is a difference operator defined so that for β = Dα, we
have

β(l, j) = α(l, j)− α(l, j + 1). (10)

Referring to the two points brought forward at the end of Section 2.1,

(i) the TV term ensures that the phase of the reconstruction at a
particular frame are predictable from neighboring frames,

(ii) the `1 term ensures that the overall spectrogram of the recon-
struction is sparse.

2.3. Selection of the Parameters

A vector α̂ solves (9) only if [17],

Ŷ ∗
(
Y − Ŷ α̂

)
= λ1D

T u+ λ2 v, (11)

for some u, v with |u(l, j)| ≤ 1, |v(l, j)| ≤ 1. Suppose now that the
reconstruction is fairly successful so that Ŷ α̂ ≈ X . In that case, we
have Y − Ŷ α̂ ≈ N , whereN is the STFT of the noise term. Noting
also |Ŷ ∗| = |Y | = |X +N |, from (11) we obtain,

|XN +N2| ≈ |λ1D
T u+ λ2 v|. (12)

If we further consider x as a white Gaussian signal, independent of
n and assume |XN + N2| ≈ |XN | + |N |2, then we obtain, after
some rearranging,

E(|XN +N2|) ≈ ‖g‖22 σ2

(
2

π
SNR + 1

)
, (13)

where SNR = ‖x‖2/‖n‖2, σ2 is the noise variance and ‖g‖22 is the
energy of the time-frequency atom used to obtain the STFT coeffi-
cients (see (1)).

Noting now that both |u| and |v| are bounded by unity (and
σ(D) = 2), we can argue that (2λ1 + λ2) should be on the order of

‖g‖22 σ2

(
2

π
SNR + 1

)
. (14)

However, the relative weight of λ1 and λ2 eventually depends on the
amount of ‘tonal’ vs. ‘transient’ components in x (see e.g. [25, 13]
for discussions). We refer to Experiment 2 for a brief discussion of
the effects of changing the relative weights of the parameters.



2.4. Relation with the Non-Negative Garrote
The formulation outlined above may be compared with the ‘non-
negative garrote’ formulation by Breiman [7]. In [7], (for the ‘or-
thonormal design’ case) the idea is to estimate a sparse vector x from
noisy observations y as, x̂ = y α̂, where α̂ is obtained by solving the
minimization problem

α̂ = argmin
α

1

2
‖y − y α‖22 + λ ‖α‖1. (15)

Notice that α̂ does not directly give the estimate but is used to ‘shape’
the noisy observations. The `1 penalty term leads to a sparse α̂,
which in turn leads to a sparse estimate.

In contrast to the non-negative garrote, in order to make use of
the phases, we obtain the denoised signal by shaping Ŷ , defined in
(7), instead of the observed signal’s STFT, namely Y . Another dif-
ference is the inclusion of a TV term so as to ensure that the amount
of phase gained in consecutive time-frequency samples is roughly
the same. If we discard the TV term and use Y instead of Ŷ in (9),
as a direct application of [7] would suggest, we obtain a separable
problem where the STFT coefficients are treated independently of
their time-frequency neighbors. This in turn leads to reconstructions
with ‘islands’ in the time-frequency representation – especially for
low SNR reconstructions, isolated time-frequency atoms start to ap-
pear in the reconstructions. These are typically perceived as musical
noise [26]. The inclusion of the TV term in (9) allows us to make
use of the observation in Section 2.1 about the phases of the neigh-
boring time-frequency coefficients. This helps reduce musical noise,
because isolated time-frequency atoms are further penalized. This
effect is also demonstrated in Experiment 2 in Section 4.

3. A MINIMIZATION ALGORITHM

3.1. A Saddle Point Problem
The `1 norm of a complex vector x =

[
x1 . . . xn

]
can be writ-

ten as,

‖x‖1 =

n∑
i=1

|xi| = sup
z∈B∞

<
{
〈x, z〉

}
, (16)

where B∞ is the unit ball of the `∞ norm in Cn (this constrains
|zi| ≤ 1) and < denotes the real part. We can thus express the
minimization problem in (9) as

min
|α(l,j)|≤1

max
|u(l,j)|≤1,
|v(l,j)|≤1

1

2
‖Y−Ŷ α‖22+λ1 <

{
〈Dα, u〉

}
+λ2 <

{
〈α, v〉

}
.

(17)
Note here that the spectral norm of D is 2.

Remark 1. In order to avoid working with complex numbers, we
can also regard α(l, j) as a two-component vector. According to
that view, the time-frequency map may be regarded as a vector field
where each time-frequency coefficient actually represents a two-
dimensional vector. This interpretation allows us to drop ‘real parts’
in the minimization expressions – see [4] for the details of such a
development.

3.2. The Algorithm
In order to numerically solve the saddle point problem in (17), we
employ the algorithm discussed in [9, 15]. The algorithm requires
computing certain projection operators PcB . Here, cB denotes the

Input SNR (dB) 5 10 15 20
Yu et al.[26] 16.79 20.13 22.71 24.82
Proposed 15.54 17.92 19.82 21.76
Prop. + Wiener 17.30 20.42 23.03 25.55

Table 1: Denoising Results. ‘Proposed’ refers to the reconstruction in (8).
‘Prop. + Wiener’ refers to the proposed method followed by empirical
Wiener filtering [16, 26].

unit ball of the `∞ norm in Cn, weighted by the constant c. For
q = PcB(s), this projection can easily be realized by setting,

q(l, j) = s(l, j)

[
max

(
|s(l, j)|
c

, 1

)]−1

. (18)

Algorithm 1 A Saddle Point Algorithm

1: Initialize α, p, ᾱ, u, v to zero.
2: repeat
3: u← Pλ1 B

(
u+DT ᾱ/2

)
4: v ← Pλ2 B

(
v +DT ᾱ/2

)
5: α← PB

(
α− (DT u+ v)/2

)
6: ᾱ← 2α− p
7: p← α
8: until Some convergence criterion is met

This algorithm is fairly easy to implement but takes some time to
convergence (1-2 minutes on a regular PC, for the experiments in the
following section). One of course may utilize alternative algorithms
(such as ADMM – see e.g. [6]) for this problem. It would also be
of interest to adapt the finite-converging algorithms proposed for 1-
dimensional TV denoising/fused lasso problem for real valued data
(see e.g. [12, 2] and the references therein). Here, our main goal is
to evaluate the formulation and demonstrate the utility of including
the phase information. We hope to investigate faster algorithms that
(approximately) solve the problem in the near future.

4. EXPERIMENTS

Experiment 1. Our first experiment demonstrates the denoising per-
formance of the proposed formulation. We use a tune played by
a stringed instrument as the clean signal. We add Gaussian noise
to this signal and obtain various noisy observations with different
SNRs. For each observation, we set (λ1, λ2) = (5β, 0.75β), where
β = ‖g‖22 σ2

(
2π−1 SNR + 1

)
(see (14)). Following [26], we also

apply an empirical Wiener filter [16] to further enhance the SNR.
The resulting SNR values are given in Table 1. In order to give
an idea about the performance with respect to the state of the art,
we also include in Table 1, the SNR values achieved by the block-
thresholding method of Yu et al. [26]. Also, Fig. 1 shows the spec-
trograms of the signals from the experiment with input SNR = 5 dB.
Observe that the proposed method preserves the harmonics that are
also preserved by the block thresholding method. Further, some of
the harmonics, parts of which are cleared by block thresholding, are
retained by the proposed method, thanks to the TV term. Note also
that empirical filtering boosts the SNR significantly, by removing
some of the bias due to (over) suppression introduced by the `1 term
(see also [10] for a discussion of this point).

Experiment 2. In this experiment, we demonstrate how the TV
term allows to control the amount of musical noise. Consider the
noisy signal spectrogram shown in Fig. 2a. The observation is a
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Fig. 1: Spectrograms of the signals in Experiment 1. (a) The noisy obser-
vation signal, SNR = 5 dB. (b) The denoised signal obtained by the block
thresholding method of [26], SNR = 16.79 dB. (c) The denoised estimate ob-
tained by the proposed formulation, SNR = 15.54 dB. (d) Result of applying
an empirical Wiener filter [16] to the signal in (c), SNR = 17.30 dB.

single note played by guitar, sampled at 11 KHz contaminated with
white Gaussian noise (SNR= 5 dB). For this experiment, let β =
‖g‖22 σ2

(
2π−1 SNR + 1

)
as in Experiment 1.

If we choose the regularization parameters as (λ1, λ2) = (β, β),
we obtain a reconstruction as shown in Fig. 2b (SNR = 18.45 dB).
We can interpret this case as an example for moderate TV regu-
larization and moderate `1 regularization. We observe that such a
choice leads to a reconstruction with a fair preservation of the har-
monics but musical noise is visible in the spectrogram.

If we increase the weight of the `1 term while keeping the TV
weight constant and set (λ1, λ2) = (β, 4β), we obtain a recon-
struction as shown in Fig. 2c (SNR = 16.44 dB). Musical noise is
indeed suppressed but at the expense of suppressing the higher order
harmonics. This is also evident from the relatively low SNR of the
reconstruction.

If we increase the weight of the TV term and set (λ1, λ2) =
(4β, β), the reconstruction is as shown in Fig. 2d (SNR = 19.01 dB).
Observe that increasing the weight of the TV term, instead of the
weight of the `1 term helps reduce musical noise with a modest sup-
pression of the higher order harmonics.

The results above indicate that, while the `1 term helps suppress
the noise in general, the TV term is instrumental in the elimination
of isolated time-frequency components.

5. CONCLUSION AND OUTLOOK

We introduced a denoising scheme that makes use of the phases and
magnitudes of the time-frequency coefficients of the observed signal.
The proposed formulation is based on the predictable behavior of
the coefficient phases along a subband. Although the experiments
in this paper are performed with Gaussian noise, the formulation
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Fig. 2: Spectrograms of the signals in Experiment 2. (a) Spectrogram of a
single note played by guitar contaminated with additive white noise, SNR
= 5 dB. (b,c,d) Reconstruction obtained by the proposed scheme with dif-
ferent regularization parameters. For a fixed value of β (see the text), the
weight parameters are (b) (λ1, λ2) = (β, β), (c) (λ1, λ2) = (β, 4β), (d)
(λ1, λ2) = (4β, β).

is applicable in more general settings as long as the phase of the
noise STFT coefficients do not fit the pattern discussed in Section 2.
We also note that the approach may be modified for use in more
general problems, such as audio clipping, inpainting or restoration
applications (see [1] and the references therein).

Based on optimality conditions, we noted that a linear combina-
tion of the parameters λ1, λ2 should be on the order of a constant
that depends on the SNR. However, the two parameters affect the
reconstructed signal in different ways, as discussed in Experiment 2.
The ratio, or the relative weight of the parameters therefore is an im-
portant choice. We think that this ratio should be chosen based on a
function that takes as input the relative energies of the tonal and the
transient components of the signal. Providing such a function would
be of interest since as it would help select the parameters automati-
cally.

Another direction might be to make use of the phase information
in adaptive block-based estimation schemes as in [26]. In that case,
estimation of α can be performed based on certain (adaptive) groups.
We hope to pursue this idea in future work.
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[8] O. Cappé. Elimination of the musical noise phenomenon with
the Ephraim and Malah noise suppressor. IEEE Trans. Speech
and Audio Proc., 2(2):345–349, April 1994.

[9] A. Chambolle and T. Pock. A first-order primal-dual algorithm
for convex problems with applications to imaging. Journal of
Mathematical Imaging and Vision, 40(1):120–145, May 2011.

[10] P. Y. Chen and I. W. Selesnick. Translation-invariant shrink-
age/thresholding of group sparse signals. Signal Processing,
94:476–489, January 2014.

[11] I. Cohen and S. Gannot. Spectral enhancement methods. In
J. Benesty, M. M. Sondhi, and Y. Huang, editors, Springer
Handbook of Speech Processing. Springer, 2008.

[12] L. Condat. A direct algorithm for 1D total variation denoising.
IEEE Signal Processing Letters, 20(11):1054–1057, Novem-
ber 2013.

[13] L. Daudet and B. Torrésani. Hybrid representations for audio-
phonic signal encoding. Signal Processing, 82(11):1595–1617,
November 2002.

[14] Y. Ephraim and D. Malah. Speech enhancement using a
minimum mean-square error short-time spectral amplitude es-
timator. IEEE Trans. Acoust., Speech, and Signal Proc.,
32(6):1109–1121, December 1984.

[15] E. Esser, X. Zhang, and T. F. Chan. A general framework for a
class of first order primal-dual algorithms for convex optimiza-
tion in imaging science. SIAM J. Imaging Sciences, 3(4):1015–
1046, November 2010.

[16] S. P. Ghael, A. M. Sayeed, and R. G. Baraniuk. Improved
wavelet denoising via empirical Wiener filtering. In Proc. SPIE
Wavelet Applications in Signal and Image Proc., 1997.

[17] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Con-
vex Analysis. Springer, 2004.

[18] M. Kowalski. Sparse regression using mixed norms. J. of Appl.
and Comp. Harm. Analysis, 27(3):303–324, November 2009.

[19] M. Kowalski, K. Siedenburg, and M. Dörfler. Social sparsity!
neighborhood systems enrich structured shrinkage operators.
IEEE Trans. Signal Processing, 61(10):2498–2511, May 2013.

[20] R. J. McAulay and T. F. Quatieri. Speech analysis/synthesis
based on a sinusoidal representation. IEEE Trans. Acoust.,
Speech, and Signal Proc., 34(4):744–754, August 1986.

[21] K. Siedenburg and M. Dörfler. Structured sparsity for audio
signals. In Proc. Int. Conf. on Digital Audio Effects (DAFx),
2011.

[22] K. Siedenburg and M. Dörfler. Persistent time-frequency
shrinkage for audio denoising. Journal of the Audio Eng. Soc.,
61(1/2):29–38, January 2014.

[23] J. O. Smith and X. Serra. ”PARSHL: An analysis/synthesis
program for nonharmonic sounds based on a sinusoidal repre-
sentation. In Proc. International Computer Music Conference,
1987.

[24] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight.
Sparsity and smoothness via the fused lasso. Journal of the
Royal Statistical Society: Series B, 67(1):91–108, 2005.

[25] T. S. Verma, S. Levine, and T. H. Y. Meng. Transient model-
ing synthesis : A flexible transient analysis/synthesis tool for
transient signals. In Proc. ICMC, 1997.

[26] G. Yu, S. Mallat, and E. Bacry. Audio denoising by time-
frequency block thresholding. IEEE Trans. Signal Processing,
56(5):1830–1839, May 2008.


