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This note presents a derivation of the classical Kalman filter. The discussion roughly follows that
in Sarkkéd’s book [1].
Consider a model of the form

T = Ap—1Tp—1 + qk—1, (1)
Yk = Hi zp + 11, (2)
where g ~ N(0,Qy), and 71, ~ N(0, Rg).

Suppose we know that zg_1|y1.x—1 ~ N(mg_1,Px_1). We would like to find the distribution
of zg|yr. Thanks to linearity in the model, we know that this is also a Gaussian, i.e., xg|y1.x ~
N (my, Py). Therefore, given a new observation yi, we seek a relation between (my_1, Px—1) and
(mg, Py). The Kalman filter provides this relation.

The plan is to first find the joint distribution of (x, yx)|y1.k—1, which is, again, Gaussian. Given
this distribution, we obtain the distribution of xy|y1.x by conditioning on y|y1.x—1, where the latter
distribution is given by marginalizing the joint Gaussian distribution (x, yx)|y1:6—1-

The last conditioning step can be achieved using the following fact about Gaussian random
variables.

Lemma 1. Suppose (g, yx)|y1.x—1 is distributed as

S(GRE)E ®
Then it follows that zg|y1.x ~ N (mg, Px) with
mi =a+CB™ (yx —b), (4a)
P.=A-CB'C". (4b)
Instead of proving this, consider an equivalent statement with a slightly simpler notation.

Lemma 2. Suppose (z,y) is distributed as

(e <)) ®

Then
zly=y" ~ N(ms +C3, (3" —my), 5, —CS; 1 CT). (6)

Proof. To prove this statement, consider first a special case. Suppose x = y; + y2, where y; ~
N(my,%1) and yo ~ N(mg,Ys) are independent. Then, given an observation y; = y°, we have
zlyr = y° ~ N(y° +ma, Ta).



Consider now the original distribution in (5). In general, we can find a matrix W, such that for
x expressed as

r=Wy+z, (7)
z is also Gaussian and independent of y. By the orthogonality principle, this is equivalent to

E((x —my) — W(y—m,)) (y —m,)" =0. (8)
Expanding and plugging in the terms from the joint the covariance matrix of (z,y), this gives

C-W2y,=0 < W=Cx" (9)
Using this, we find the expression for x as x = ¢ — C E;ly. First, note that

E(z) =m, — CX, " my,. (10)
Since z and W y are independent, we should have

cov(z) +cov(Wy) = cov(z) <= cov(z) =%, -WE, Wl =%, — CZ;l cT. (11)
Therefore, using the observation in the beginning of the proof (y; replaced by Wy), we find

aly =y° ~N(me +C S, (40 —my), S — CX, 1 CT). (12)

O

Given Lemma 1, the problem boils down to determining the joint distribution (x, yx)|y1.k—1 as
a function of (mg_1, Pr—1).

We get to the joint distribution (x,yx)|y1.k—1 in two steps. First, we consider the distribution
Z|y1.x—1. Note that, with the usual abuse of notation regarding pdfs of random variables®,

p(xk|y1k—1) = /p(xk,fﬂk—1|y1:k—1)d$k—1 (13)
:/P(l’k\l?k—l,yl:k—l)P(Ik—l|y1:k—1)dxk—1 (14)
:/p(mk‘xkfl)p(xkfl‘yl:kfl)dxkfl- (15)

where in the last step, we used the fact that given z;_1, zy is independent of previous observations.
Note that the last integral is just the marginal of the joint distribution of (zy,zg_1), where xp_1’s
distribution is replaced by that of zy_1|y1.,—1, which is N (mg_1, Py—1). Thus, using (1), we find

Trlyie—1 ~ N (i, By, (16)
with

My = Ap—1 Mp—1, (17)

Py=Ap 1 Poy A+ Qi (18)

Here, the auxiliary parameters with hats may be interpreted as encoding our prediction of the current
state’s distribution given past observations.

1By this, I mean the practice of representing the pdf of a random variable X as p(x), rather than something like
px ().



We can now write

(ke Ykly1k—1) = Ykl Tk, Y1:k—1) P(Tk|Y1:8—1) (19)
= p(yk|or) p(Tk|y1:k—-1), (20)
where in the last line, we used the fact that yj is independent of past observations given the current

state x, which is a consequence of the observations model (2). In order to interpret the last
inequality, recall that yy|zy ~ N (Hy zk, Ri), and xg|y1.5—1 ~ N (g, Pr). Therefore, we find that

E(yk|y1:k—1) = Hi my, (21)
var(yp|yi.x—1) = Hy Py HL + Ry, (22)
E(zy, v} [y1.6-1) = P HY (23)

Therefore, the joint distribution (yx, zx)|y1.k—1 can be written as in (3) with

a = Thk, (24)
b= H iy, (25)
A= P, (26)
B=H, P.HI + Ry, (27)
C =P HF. (28)
Using (4), we thus obtain
my, = 1, + Py HE (Hy Py HE + Ri,) ™ (yr — H 1), (29)
Pk:]ak—Png (HkPkH,Z—FRk)_l Hkpk- (30)

To summarize, the Kalman filter consists of the following operations :

Algorithm 1 Kalman Update

Require: Given a state update equation as in (1), and an observation equation as in (2), we have
the matrices Ap_1, Hy, and the state update covariance matrix QQ,_1, and the observation noise
covariance matrix Ry. We also know that zg_1|y1.x—1 ~ N (mg_1, Px—1). The goal is to compute
(mk, Pk)

my < Ag—1mg—1 %heompute E(xk|yir—1)

Py A1 Pe 1 AT |+ Qi1 ‘hcompute var(zg|yi.k—1)

my, < 1 + Py HE (Hy, Py HE + Rie) ™ (yr, — Hy i)

P+ Pk — Pk Hg (Hk Pk Hg + Rk)_l Hy, Pk

References

[1] Simo Sérkké. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks.
Cambridge University Press, 2013.



