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This note presents a derivation of the classical Kalman filter. The discussion roughly follows that
in Särkkä’s book [1].

Consider a model of the form

xk = Ak−1 xk−1 + qk−1, (1)

yk = Hk xk + rk, (2)

where qk ∼ N (0, Qk), and rk ∼ N (0, Rk).
Suppose we know that xk−1|y1:k−1 ∼ N (mk−1, Pk−1). We would like to find the distribution

of xk|yk. Thanks to linearity in the model, we know that this is also a Gaussian, i.e., xk|y1:k ∼
N (mk, Pk). Therefore, given a new observation yk, we seek a relation between (mk−1, Pk−1) and
(mk, Pk). The Kalman filter provides this relation.

The plan is to first find the joint distribution of (xk, yk)|y1:k−1, which is, again, Gaussian. Given
this distribution, we obtain the distribution of xk|y1:k by conditioning on yk|y1:k−1, where the latter
distribution is given by marginalizing the joint Gaussian distribution (xk, yk)|y1:k−1.

The last conditioning step can be achieved using the following fact about Gaussian random
variables.

Lemma 1. Suppose (xk, yk)|y1:k−1 is distributed as

N
([

a
b

]
,

[
A C
CT B

])
. (3)

Then it follows that xk|y1:k ∼ N (mk, Pk) with

mk = a + C B−1(yk − b), (4a)

Pk = A− C B−1CT . (4b)

Instead of proving this, consider an equivalent statement with a slightly simpler notation.

Lemma 2. Suppose (x, y) is distributed as

N
([

mx

my

]
,

[
Σx C
CT Σy

])
. (5)

Then

x|y = y0 ∼ N (mx + C Σ−1
y (y0 −my),Σx − C Σ−1

y CT ). (6)

Proof. To prove this statement, consider first a special case. Suppose x = y1 + y2, where y1 ∼
N (m1,Σ1) and y2 ∼ N (m2,Σ2) are independent. Then, given an observation y1 = y0, we have
x|y1 = y0 ∼ N (y0 + m2,Σ2).
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Consider now the original distribution in (5). In general, we can find a matrix W , such that for
x expressed as

x = W y + z, (7)

z is also Gaussian and independent of y. By the orthogonality principle, this is equivalent to

E
(
(x−mx)−W (y −my)

)
(y −my)T = 0. (8)

Expanding and plugging in the terms from the joint the covariance matrix of (x, y), this gives

C −WΣy = 0 ⇐⇒ W = C Σ−1
y . (9)

Using this, we find the expression for x as x = c− C Σ−1
y y. First, note that

E(z) = mx − C Σ−1
y my. (10)

Since z and W y are independent, we should have

cov(z) + cov(W y) = cov(x) ⇐⇒ cov(z) = Σx −WΣy W
T = Σx − CΣ−1

y CT . (11)

Therefore, using the observation in the beginning of the proof (y1 replaced by W y), we find

x|y = y0 ∼ N (mx + C Σ−1
y (y0 −my),Σx − C Σ−1

y CT ). (12)

Given Lemma 1, the problem boils down to determining the joint distribution (xk, yk)|y1:k−1 as
a function of (mk−1, Pk−1).

We get to the joint distribution (xk, yk)|y1:k−1 in two steps. First, we consider the distribution
xk|y1:k−1. Note that, with the usual abuse of notation regarding pdfs of random variables1,

p(xk|y1:k−1) =

∫
p(xk, xk−1|y1:k−1) d xk−1 (13)

=

∫
p(xk|xk−1, y1:k−1) p(xk−1|y1:k−1)d xk−1 (14)

=

∫
p(xk|xk−1) p(xk−1|y1:k−1)d xk−1. (15)

where in the last step, we used the fact that given xk−1, xk is independent of previous observations.
Note that the last integral is just the marginal of the joint distribution of (xk, xk−1), where xk−1’s
distribution is replaced by that of xk−1|y1:k−1, which is N (mk−1, Pk−1). Thus, using (1), we find

xk|y1:k−1 ∼ N (m̂k, P̂k), (16)

with

m̂k = Ak−1 mk−1, (17)

P̂k = Ak−1 Pk−1 A
T
k−1 + Qk−1. (18)

Here, the auxiliary parameters with hats may be interpreted as encoding our prediction of the current
state’s distribution given past observations.

1By this, I mean the practice of representing the pdf of a random variable X as p(x), rather than something like
pX(·).
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We can now write

p(xk, yk|y1:k−1) = p(yk|xk, y1:k−1) p(xk|y1:k−1) (19)

= p(yk|xk) p(xk|y1:k−1), (20)

where in the last line, we used the fact that yk is independent of past observations given the current
state xk, which is a consequence of the observations model (2). In order to interpret the last
inequality, recall that yk|xk ∼ N (Hk xk, Rk), and xk|y1:k−1 ∼ N (m̂k, P̂k). Therefore, we find that

E(yk|y1:k−1) = Hk mk, (21)

var(yk|y1:k−1) = Hk P̂k H
T
k + Rk, (22)

E(xk y
T
k |y1:k−1) = P̂k H

T
k (23)

Therefore, the joint distribution (yk, xk)|y1:k−1 can be written as in (3) with

a = m̂k, (24)

b = Hk m̂k, (25)

A = P̂k, (26)

B = Hk P̂k H
T
k + Rk, (27)

C = P̂k H
T
k . (28)

Using (4), we thus obtain

mk = m̂k + P̂k H
T
k (Hk P̂k H

T
k + Rk)−1 (yk −Hk m̂k), (29)

Pk = P̂k − P̂k H
T
k (Hk P̂k H

T
k + Rk)−1 Hk P̂k. (30)

To summarize, the Kalman filter consists of the following operations :

Algorithm 1 Kalman Update

Require: Given a state update equation as in (1), and an observation equation as in (2), we have
the matrices Ak−1, Hk, and the state update covariance matrix Qk−1, and the observation noise
covariance matrix Rk. We also know that xk−1|y1:k−1 ∼ N (mk−1, Pk−1). The goal is to compute
(mk, Pk).

1: m̂k ← Ak−1 mk−1 %compute E(xk|y1:k−1)
2: P̂k ← Ak−1 Pk−1 A

T
k−1 + Qk−1 %compute var(xk|y1:k−1)

3: mk ← m̂k + P̂k H
T
k (Hk P̂k H

T
k + Rk)−1 (yk −Hk m̂k)

4: Pk ← P̂k − P̂k H
T
k (Hk P̂k H

T
k + Rk)−1 Hk P̂k.
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[1] Simo Särkkä. Bayesian Filtering and Smoothing. Institute of Mathematical Statistics Textbooks.
Cambridge University Press, 2013.

3


