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İlker Bayram
ibayram@ieee.org

Introduction

Suppose X is a zero-mean Gaussian random vector with covariance Σ0, and we
make observations of the form

Zk = hTkX +Nk, (1)

where Ni’s are independent zero-mean Gaussian random variables with variance
σ2, and hk’s are given constant observation vectors (generalization to matrices
is straightforward). Our goal is to estimate X given Z1, . . . , Zk, in a computa-
tionally efficient manner.

Thanks to the problem setup, all of the random variables are zero-mean
Gaussian, and therefore, it follows that the unbiased minimum variance es-
timator of X in terms of Z1, . . . , Zk, namely E(X|Z1, Z2, . . . , Zk), is a linear
combination of Zi’s. We specifically want to update our estimate in an online
fashion, as we make more and more observations, and use all the history, but
without keeping all of the observations in the memory. The RLS algorithm
provides a solution for this problem.

In the following, I will first give a characterization of the solution. Then, I
will introduce an equivalent problem, which is usually used to motivate RLS,
that does not refer to random variables. After that, I will derive the RLS
algorithm, using the stochastic framework outlined above.

Characterization of the Solution

Suppose we stack Zi’s to form a matrix Zk =
[
Z1 . . . Zk

]T
. Considering X

to be a length-m random (column) vector, the problem we are trying to solve is

min
A∈Rm×k

E
(
‖X −A Zk ‖22

)
. (2)

After some algebra, we can write down the optimal A as

Â = E(X ZT
k ) E(Zk ZT

k )−1. (3)
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In order to write down an expression for these expected values, set Hk =[
h1 h2 . . . hk

]T
. Then, we find

E(X ZT
k ) = Σ0H

T
k (4)

E(Z ZT ) = HkΣ0H
T
k + σ2 I. (5)

In principle then, the problem reduces to keeping track of the inverse of the
matrix HkΣ0H

T
k +σ2 I as k increases. In the following, we follow an equivalent

but different course to derive RLS. Before that, though, I discuss an equivalent
formulation that is more frequently used to when introducing RLS.

‘Deterministic Setting’

An equivalent formulation can be obtained by making use of the properties of
Gaussian random variables. For that, suppose the random experiment respon-
sible for producing X along with noise terms Nk has been performed, and we
observed Zi = zi, for 1 ≤ i ≤ k. We would like to find the actual realization
of X. Adopting the expected square error as the loss to minimize, the solution
is E(X|Z1 = z1, . . . , Zk = zk). Thanks to all of the random variables being
Gaussian, this expected value is actually the only mode of the posterior pdf
fX|Z1,...Zk

(x|z1, . . . , zk). Therefore, it suffices to look for the maximizer of this
posterior pdf.

Note now that the posterior pdf satisfies

fX|Z1,...Zk
(x|z1, . . . , zk) ∝ fZ1,...Zk|X(z1, . . . , zk|x) fX(x). (6)

Taking logarithms, and plugging in the expressions for the pdfs, we find

arg max
x

fX|Z1,...Zk
(x|z1, . . . , zk) (7)

= arg min
x
− log

(
fZ1,...Zk|X(z1, . . . , zk|x)fX(x)

)
(8)

= arg min
x

1

2σ2

k∑
i=1

(zi − hTi x)2 +
1

2
xT Σ−10 x. (9)

Solving for the minimizer, we find (using the definition of Hk above)

x̂ =

(
1

σ2
HT H + Σ−10

)−1
HT

z1...
zk

 . (10)

Note that the matrix Â = (HT H/σ2 + Σ−10 )−1HT estimating x̂ from the
observations appears to be different than A = Σ0H

T
k (HkΣ0H

T
k + σ2 I)−1 we

derived above. However, they are in fact equal. To see this, multiply both
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matrices on the right by C = (HT H/σ2 + Σ−10 ). This gives,

C Â = HT (11)

C A =
1

σ2
HT

k HkΣ0H
T
k (HkΣ0H

T
k + σ2 I)−1 +HT

k (HkΣ0H
T
k + σ2 I)−1

(12)

=
1

σ2
HT

k (HkΣ0H
T
k + σ2 I)−1HkΣ0H

T
k +HT

k (HkΣ0H
T
k + σ2 I)−1

(13)

= HT
k (HkΣ0H

T
k + σ2 I)−1 (HkΣ0H

T
k + σ2 I) (14)

= HT
k (15)

Thus, both approaches yield the same solution, as expected.

The Algorithm

We finally consider the derivation of the RLS algorithm in this section.
Let

X̂k = E(X|Z1, Z2, . . . , Zk) (16)

denote the optimal estimator of X given Z1, . . . , Zk, and define an error sequence

Ek = X − X̂k. (17)

Let us denote the covariance of Ek for 1 ≤ i ≤ k by Σk. Also, let

Ck = E(XT Ek). (18)

Suppose now that we receive the observation Zk+1. RLS provides expressions
for X̂k+1, Σk+1, and Ck+1, starting from X̂k, Σk, and Ck.

First, observe that

Zk+1 = hTk+1 (X̂k + Ek) +Nk+1, (19)

so that

Zk+1 − hTk+1 X̂k = hTk+1Ek +Nk+1. (20)

But E(Ek Zi) = 0 for i ≤ k, by the orthogonality principle. Also, since
E(Nk+1 Zi) = 0 for i ≤ k, the random variable Z̃k+1 defined as

Z̃k+1 :=Zk+1 − hTk+1 X̂k (21)

=hTk+1Ek +Nk (22)
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is independent of Zi’s. As a consequence,

X̂k+1 = E(X|Zk+1, Zk, . . . , Z1) (23)

= E(X|Z̃k+1, Zk, . . . , Z1) (24)

= E(X|Z̃k+1) + E(X|Zk, . . . , Z1) (25)

= E(X|Z̃k+1) + X̂k. (26)

Thanks to normality of the random variables, we can write

E(X|Z̃k+1) = E(X Z̃k+1) E
(
(Z̃k+1)2

)−1
Z̃k+1. (27)

We need the two expected values, E(X Z̃k+1), and E
(
(Z̃k+1)2

)
.

First note that

E(X Z̃k+1) = E(X ET
k hk+1) + E(X Nk+1) = Ck hk+1. (28)

We also have,

var(Z̃k+1) = hTk+1 Σ1 hk+1 + σ2. (29)

So, the update equations are

X̂k+1 = Ck hk+1(hTk+1 Σk hk+1 + σ2)−1 (Zk+1 − hTk+1 X̂k) + X̂k (30)

In order to implement this, we also need update equations for Ck and Σk.
Now define Fk+1 = Ck hk+1(hTk+1 Σk hk+1 + σ2)−1 so that,

X̂k+1 = Fk+1 (Zk+1 − hTk+1 X̂k) + X̂k (31)

= Fk+1 (hTk+1Ek +Nk+1) + X̂k. (32)

where we used (20) in the last line. Subtracting this from X, we obtain a
recursion equation for Ek as

Ek+1 = Ek − Fk+1 (hTk+1Ek +Nk+1) (33)

= (I − Fk+1 h
T
k+1)Ek − Fk+1Nk+1. (34)

It is now easier to see that

Ck+1 = E(X ET
k+1) = Ck(I − hk+1 F

T
k+1), (35)

and

Σk+1 = E(Ek+1E
T
k+1) = (I−Fk+1 h

T
k+1)Σk (I−hk+1 F

T
k+1)+σ2 Fk+1 F

T
k+1. (36)
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