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Abstract We consider the problem of decomposing

audio into components that have different time fre-

quency characteristics. For this, we model the com-

ponents using different transforms and mixed norms.

While recent works concentrate on the synthesis prior

formulation, we consider both the analysis and synthe-

sis prior formulations. We derive algorithms for both

formulations through a primal-dual framework. We also

discuss how to modify the primal-dual algorithms in or-

der to derive a simpler heuristic scheme.

Keywords Audio decomposition · mixed norms ·
analysis prior · synthesis prior · primal-dual

1 Introduction

Decomposing an audio signal into components with dif-

ferent time-frequency characteristics can be of interest

in a number of different scenarios. For instance, if we

wish to modify a certain instrument in a music signal,

then separating the instrument from the rest of the sig-

nal appears as a plausible preprocessing step. If the

time-frequency behavior for the instrument of interest

differs from the rest of the signal, then this preprocess-

ing step poses a decomposition problem as described

above. Another example may be an audio restoration

This work is supported by a TUBITAK 3501 Project
(110E240).
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problem, where the signal contains artifacts (like crack-

les) due to recording, that are distinct from the signal

of interest, from a time-frequency viewpoint. More gen-

erally, a closely related problem is the decomposition of

audio as

Tonal + Transient + Residual.

Originally, such a decomposition was proposed as a pre-

processing step for audio coding, as well as other modi-

fications [18,28,41]. Although the goal of each example

described above is different, they all require a decom-

position of audio into components with different time-

frequency behavior. In this paper, we consider formu-

lations of the decomposition problem based on ‘mixed

norms’ (see also [27, 37] for related work) and derive

algorithms following a primal-dual framework. Based
on these new algorithms, we also propose a heuristic

scheme that can achieve decompositions with similar

characteristics.

Put briefly, mixed norm formulations for decompo-

sition make use of the different structures inherent in

the frame coefficients (see [10] for a detailed discussion

of frames) of the tonal and the transient component.

Specifically, suppose we have a frame that is suitable

for analyzing the tonal component and a frame that is

suitable for analyzing the transient component. Let A1,

A2 denote the corresponding frame synthesis operators.

Here, we can think of A1 as a matrix whose columns

contain atoms that are well localized in frequency. On

the other hand, A2 may be regarded as a matrix whose

columns contain atoms that are well localized in time.

Also, let w1, w2 denote the frame coefficients of the

tonal and transient components. Typically, the distri-

bution of the energy through w1 and w2 exhibit dif-

ferent patterns. In w1, we expect to see thin clusters

parallel to the time axis (as in Fig. 7b). In contrast, w2
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is expected to contain thin clusters that lie parallel to

the frequency axis (see Fig. 7c). Mixed norms allow to

penalize deviations from these patterns.

A description of mixed norms is provided in Sec-

tion 2.1 (see [25] for a more detailed discussion). For

now, suppose that, throughout the set of frame coeffi-

cients with unit energy, ‖ · ‖a is a norm that assumes

lower values for the frame coefficients of signals that

exhibit tonal behavior. Similarly, suppose that ‖ · ‖b is

a norm that assumes lower values for the frame coeffi-

cients of signals that exhibit transient behavior. In this

setting, given an audio excerpt y, one possible formu-

lation for decomposition is [27],

(w1, w2) = argmin
θ1,θ2

1

2
‖y −A1 θ1 −A2 θ2‖22

+ λ1 ‖θ1‖a + λ2 ‖θ2‖b. (1)

This is a synthesis prior formulation – the coefficients

w1, w2 tell us which particular linear combinaton of the

corresponding frame atoms should be used to construct

the two components. When problems of the form

min
θ1

1

2
‖u1 − θ1‖22 + λ1 ‖θ1‖a, (2a)

min
θ2

1

2
‖u2 − θ2‖22 + λ2 ‖θ2‖b, (2b)

are easy to solve (i.e. when the proximal mappings [12]

of ‖ · ‖a and ‖ · ‖b are easy to realize), the minimiza-

tion problem in (1) can be solved using iterative shrink-

age/thresholding algorithms1 (ISTA) as in Algorithm 1.

Algorithm 1 An Iterative Shrinkage Algorithm
repeat

wi ← wki + αATi (y −A1 w
k
1 −A2 w

k
2 ), i = 1, 2, (3)

wk+1
1 ← argmin

θ1

1

2
‖w1 − θ1‖22 + λ1 ‖θ1‖a, (4)

wk+1
2 ← argmin

θ2

1

2
‖w2 − θ2‖22 + λ2 ‖θ2‖b. (5)

until convergence

For certain types of mixed norms, (specifically, mixed

norms with ‘non-overlapping groups’ – see Section 2.1),

the proximal maps (4), (5) in ISTA type algorithms can

be realized in a single step. Unfortunately, this is not

always the case – one needs iterative algorithms to solve

(4), (5) (see [1,2] for a discussion). This in turn implies

1 In practice, accelerated versions of ISTA, such as FISTA
[5] might also be used. A discussion of FISTA is included
in Experiment 2. Here, we employ ISTA in the discussion
because of its simpler form.

nested iterations in an ISTA type algorithm and is not

desirable.

An alternative to the synthesis prior formulation is

the analysis prior formulation. In this case, the compo-

nents (x1, x2) are estimated as

(x1, x2) = argmin
t1,t2

1

2
‖y − t1 − t2‖22

+ λ1 ‖AT1 t1‖a + λ2 ‖AT2 t2‖b. (6)

Unlike the synthesis prior formulation, where the vari-

ables of interest are the frame coefficients of the com-

ponents, here we directly obtain the components in the

time domain.

The formulation in (6) asks that the analysis co-

efficients of the frame follow the given expected pat-

tern. In view of this, it has been argued [14] that the

analysis prior is more demanding since for an overcom-

plete frame, the analysis coefficients lie on a subspace

of smaller dimension than that of the synthesis coeffi-

cients – consequently, the analysis coefficients have less

freedom (also see [36] for a comparison of the analy-

sis/synthesis formulation and [31] for a recent discus-

sion).

From an algorithmic viewpoint, for the analysis prior

formulation, the proximity mappings of ‖AT1 · ‖a and

‖AT2 · ‖b are of interest. These require the solution of

min
t1

1

2
‖u1 − t1‖22 + λ1 ‖AT1 t1‖a, (7a)

min
t2

1

2
‖u2 − t2‖22 + λ2 ‖AT2 t2‖b. (7b)

Unfortunately, these proximal mappings are not easy to

realize and one has to resort to iterative algorithms [1].

This in turn renders ISTA type algorithms infeasible.

To the best of our knowledge, there is no previous work

addressing the analysis prior formulation that employs

mixed norms for the decomposition problem, as de-

scribed above.

In this paper, we propose primal-dual algorithms

where each substep involves simple operations. The pro-

posed algorithms can handle both the analysis and syn-

thesis formulations. Therefore, they are also of interest

in that they allow to compare the results of the two for-

mulations. In addition, we also discuss how to modify

the algorithms to obtain a convergent scheme.

In order to derive the algorithms, we first rewrite

the minimization problems above as saddle point prob-

lems. For this, we first study mixed norms and present a

dual description. After transforming the formulation to

a saddle point problem, we present a convergent primal-

dual algorithm based on recent work [7, 15,42].
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Related Work on Audio Decomposition

Both the analysis and the synthesis prior formulations

described above may be fit into the ‘morphological com-

ponent analysis’ (MCA) framework [16,39] – see for ex-

ample [34, 35]. However, the introduction of the ‘tonal

+ transient + residual’ representation of audio predates

the work on MCA [18, 28, 41] – see also [29, 38] for

earlier work. Different schemes have been proposed to

achieve such decompositions. In [13], the authors esti-

mate the tonal and the transient components sequen-

tially (i.e. they first estimate the tonal and then esti-

mate the transient from the residual), using different

transforms for the two components and a locally adap-

tive thresholding strategy. Reference [30] achieves the

decomposition by employing a hidden Markov model

for the frame coefficients of the components, that takes

into account the time-frequency persistence properties

of the components. The decomposition is realized se-

quentially, as in [13]. It is noted in [30] that for such

sequential schemes, the performance of the tonal esti-

mation is important as it affects the transient estimate,

which is derived from the residual signal. We note that

the formulation in this paper does not rely on such a

scheme – the components are estimated jointly by min-

imizing a cost function.

A different approach that obtains an adaptive rep-

resentation of the signal, using different time-frequency

frames was proposed in [22]. Roughly, the idea is to con-

sider a tiling of the time-frequency plane and approx-

imate each tile (which needs multiple time-frequency

atoms to cover), using atoms from a fixed frame, where

the particular frame for a tile is selected from a given

set of frames. Given such an approximation of the orig-

inal signal, the procedure is repeated on the residual.

Once a reasonable approximation is at hand, each frame

yields a different component/layer.

More recently, mixed norms [27] have been utilized

to formulate the multilayer decomposition problem as

in (1). A coordinate descent type algorithm was pro-

posed in [27] for this formulation. Albeit effective for

the problems in [27], we have found that coordinate

descent type algorithms are not very feasible for the

analysis prior or when overlapping-group mixed norms

are used, since the associated proximal mappings can

not be realized in a single step.

A recent work that avoids the use of proximal map-

pings as in (2), (7) can be found in [8], where the au-

thors consider a denoising formulation based on mixed

norms. They derive an algorithm by ‘majorizing’ [17,20]

the mixed norm at each iteration of the algorithm. Al-

though the denoising problem differs from the one con-

sidered in this paper, the method in [8] can be extended

straightforwardly to a decomposition formulation by

majorizing the ‘data term’ as well.

Remarks on Audio Decomposition

As noted by one of our reviewers, the decomposition

of audio as ‘tonal+transient+noise’ is not necessarily

a physically meaningful one. For example, for an au-

dio excerpt with two instruments, such as ‘flute + per-

cussion’, the work discussed on audio decomposition

discussed above does not necessarily aim for the sep-

aration of the two instruments – see [9] in this con-

text, which shows that, signals that also contain strong

transient components like a glockenspiel signal or a cas-

tanets signal can be faithfully represented using sums

of AM modulated sinusoids. Nevertheless, for the ‘flute

+ percussion’ decomposition problem, it can still be

useful to base a decomposition scheme on the differ-

ence between the time-frequency characteristics of the

two components, which in turn lead to a model akin

to ‘tonal + transient’. The algorithms discussed in this

paper allow to discover the limitations or feasibility of

such a model.

The ‘transient + tonal’ model, when understood in

a broad sense as discussed above, may also be useful

in restoration tasks, when the undesired artifacts show

‘transient’ behavior. We present one example in Ex-

periment 1, where the clean signal, which shows strong

tonal behavior, is contaminated by artifacts due to record-

ing. The artifacts show quite a different behavior in

the time-frequency plane, which, however, also differ

from Gaussian noise. In such a situtation, we argue that

modelling only the desired signal leads to poorer per-

formance than modelling both the desired signal and

the noise. Modelling the two components at the same

time leads to a decomposition problem, rather than a

denoising problem with a quadratic data discrepancy

term.

Outline

Following the Introduction, we discuss how to trans-

form the synthesis/analysis prior problems, in (1), (6)

respectively, into saddle point problems in Section 2.

For this, we make use of an alternative description of

mixed norms. Given the saddle point problem, we de-

scribe algorithms for the synthesis and analysis prior

formulations in Section 3. We present a heuristic primal-

dual scheme in Section 4, by modifying the formally

convergent algorithms. Experiments on real audio sig-

nals are presented in Section 5, in order to evaluate the
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presented algorithms and demonstrate their use. Sec-

tion 6 is the conclusion.

Notation

From this point on, bold variables as in x, xi or zi

denote vectors. The jth component of the vector x is

denoted by xj . Throughout the text, x1 and x2 denote

the ‘primary variables’ for the tonal and transient com-

ponent respectively.

2 Saddle Point Formulation

In this section, we rewrite the formulation as a saddle

point problem. For this, we will first study the ‘dual’

representation of mixed norms. Specifically, we will write

the mixed norm ‖x‖, as ‘supz∈K〈x, z〉’ where K is a set

that depends on the norm2. This allows us to transform

the problem into a saddle point search, which in turn

can be solved using primal-dual algorithms.

Remark 1 The function ‘supz∈K〈x, z〉’ is called the ‘sup-

port function of K’ [19].

2.1 Mixed Norms

Definition

Consider a vector x =
(
x1, x2, . . . , xN

)
. Suppose that

gi’s are a collection of subvectors (groups) where gi =(
xi1 , xi2 , . . . , xiM

)
. Here, we take equal length gi’s for

simplicity of notation, but in general there are no re-

strictions on the size of these groups. We note that

gi’s might be sharing elements, i.e. it is possible that

xin = xjk for some (i, j, k, n) with i 6= j – in this case

we say that the groups overlap [2]. In this setting, the

(p, q) - mixed norm of x is defined as,

‖x‖p,q =

(∑
i

‖gi‖qp

)1/q

. (8)

Here, ‖ · ‖p denotes the `p norm. In this paper, we will

be interested in the case p = 2, q = 1. For a general

discussion, we refer the reader to [25,27].

For the choice p = 2, q = 1, a mixed norm, with

non-overlapping groups, penalizes deviations from zero

of groups of coefficients. This is unlike the `1 norm,

which acts on individual coefficients. By allowing the

groups to overlap, the goal is to obtain some sort of

‘shift invariance’, which can be an expected feature for a

2 This is indeed possible for any norm, see [19].

x1 x2

Group 1 Group 2

x3 x4

Group 2 Group 3

x5

Group 4

Fig. 1 A length-five vector and four groups for defining a
mixed norm.

norm acting on a natural signal like audio. However, we

also note at this point that the overlapping group mixed

norm definition above is not necessarily the only choice

to allow groups to overlap. In particular, as remarked

by one of our reviewers, this definition does not force a

group to zero, if one of its neighboring groups is non-

zero. In this regard, we refer to [21], which introduces

an alternative mixed norm. The example below also

demonstrates this.

Example

To give a concrete example, consider the length-five vec-

tor in Fig.1. Here, the groups are formed as

g1 =
(
x1, x2

)
, g2 =

(
x2, x3

)
,

g3 =
(
x3, x4

)
, g4 =

(
x4, x5

)
.

Given the groups, the mixed norm of x for p = 2, q = 1

is,

‖x‖2,1 =
√
x21 + x22 +

√
x22 + x23

+
√
x23 + x24 +

√
x24 + x25. (9)

Suppose now that we use this norm in some recovery

formulation. In such a situation, if, in the solution, we

we want to keep (x2, x3), then in addition to g2, we

should also keep g1 and g3. In a sense, g2 being non-

zero gives some credit to its neighboring groups. Such a

behavior may be questionable from a point of view that

seeks sparsity, where it is desired to keep as few groups

as possible. However, it might also be a desired behavior

when xi’s are actually the analysis coefficients of some

audio signal. Because, in our opinion, rather than a

cluster of coefficients that start and end abruptly, a

smoother appearing cluster is more likely in such a case.

Mixed Norms as Support Functions

Notice that for any vector x of length-N , we can write

‖x‖2 =

(∑
k

|xk|2
)1/2

, (10)
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as

‖x‖2 = sup
z∈B
〈x, z〉, (11)

where B ⊂ RN is the unit ball of the `2 norm, i.e.,

B = {z : ‖z‖2 ≤ 1}. (12)

Now, let us define Ki ⊂ RN as

Ki = B ∩ {z : zj = 0, if j /∈ {i1, . . . iM}} , (13)

Remark 2 Ki may be regarded as the projection of B

onto the coordinates active in the ith group. ut

We can now write ‖gi‖2 as,

‖gi‖2 = sup
zi∈Ki

〈x, zi〉. (14)

In this description, we refer to zi as the dual variables

for the ith group.

Remark 3 Notice that for zi, i.e., the dual variables for

gi =
(
xi1 , xi2 , . . . , xiM

)
, it suffices to store only the

variables zii1 , z
i
i2
, . . . , ziiM , since the rest of zij ’s are equal

to zero. ut

We can now write ‖x‖2,1 as,

‖x‖2,1 =
∑
i

sup
zi∈Ki

〈x, zi〉. (15)

Remark 4 When the groups cover all of xj ’s without

overlap, the number of dual variables (that need to be

stored) is equal to the dimension of x. If the groups

overlap, the number of dual variables exceed the di-

mension of x. ut

Remark 5 We can also write

‖x‖2,1 = supz∈K〈x, z〉, where K =
∑
iKi. However, it

is more convenient to consider Ki’s separately for the

primal-dual algorithm. Nevertheless, when Ki ∩ Kj =

{0}, it might be preferrable to work with the sums of

the sets in the implementation stage. ut

Remark 6 Provided that K is a closed and bounded set,

we can replace the expressions that involve ‘supz∈K ’

with ‘maxx∈K ’. We note that this is the case for the

sets of interest in the following, therefore we shall use

‘max’ from this point on. ut

Example

For the example in Fig.1, the sets Ki are,

K1 = {z :
√
z21 + z22 ≤ 1 and z3 = z4 = z5 = 0}

K2 = {z :
√
z22 + z23 ≤ 1 and z1 = z4 = z5 = 0} (16)

K3 = {z :
√
z23 + z24 ≤ 1 and z1 = z2 = z5 = 0}

K4 = {z :
√
z24 + z25 ≤ 1 and z1 = z2 = z3 = 0}

Also, notice that K1 ∩K3 = {0} and K1 + K3 is easy

to describe :

K1 +K3 ={
z :
√
z21 + z22 ≤ 1,

√
z23 + z24 ≤ 1 and z5 = 0

}
. (17)

Projections onto Ki

In the following, we will need to project vectors onto

Ki. We note that given x, its projection onto Ki can

be obtained by projecting
(
xi1 , xi2 , . . . , xiM

)
onto the

unit `2 ball in RM and setting the rest of the entries to

zero. Analytically, the projection p is described as,(
pi1 , . . . , piM

)
=
(
xi1 , . . . , xiM

) 1

max
(
‖xi1 , . . . , xiM ‖2, 1

) ,
pj = 0, if j /∈ (i1, i2, . . . , iM ). (18)

An Alternative Description

Yet another alternative description of mixed norms will

be useful when we discuss convergence of the algorithms.

For this, let πKi denote a linear projection operator de-

fined as follows. For t = πKi z, we have,

tj =

{
zj , if j ∈ (i1, i2, . . . , iM ),

0, if j /∈ (i1, i2, . . . , iM ).
(19)

Notice that πTKi = πKi . In this case, for ‖gi‖2 given as

in (14), we can write

‖gi‖2 = max
zi∈B
〈πKi x, zi〉 (20)

= max
zi∈B
〈x, πKi zi〉. (21)

Therefore,

‖x‖2,1 =
∑
i

max
zi∈B

〈πKi x, zi〉. (22)

Remark 7 If Ki ∩ Kj = {0}, for all (i, j) pairs with

i 6= j, then the spectral norm of
∑
i πKi is unity. ut
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Fig. 2 Definition of a group in a time-frequency map.

2.2 Time and Frequency Persistence Using Mixed

Norms

We now discuss how the mixed norms can be put to

use for modeling the time/frequency persistence of the

components.

Consider Fig. 2, which depicts the coefficients of

a time-frequency frame. Here, a prototypical group is

shown (dashed rectangle). The group covers a rectangle

of L coefficients along the time-axis and W coefficients

along the frequency axis. Imagine that we define the

other groups by shifting this group along the time axis

by multiples of sL coefficients and along the frequency

axis by multiples of sW coefficients. When L > W ,

the mixed norm, defined by this collection of groups,

is expected to assume lower values for ‘tonal compo-

nents’ compared to ‘transient components’. Similarly,

if W > L, the resulting mixed norm assumes lower

values for ‘transient components’ compared to ‘tonal

components’.

In the following, let ‖ · ‖ton and ‖ · ‖tr denote mixed

norms which assume low values for the tonal and the

transient components respectively. Using the descrip-

tion provided in Section 2.1, we write

‖ · ‖ton =

n∑
i=1

max
zi∈Ci

〈·, zi〉, (23a)

‖ · ‖tr =

m∑
i=1

max
ti∈Di

〈·, ti〉. (23b)

Here, Ci and Di denote projected `2-norm balls associ-

ated with different groups that are used in the defini-

tions of the mixed norms, as discussed in Section 2.1.

2.3 Analysis/Synthesis Formulations

In the following, let A1 and A2 denote synthesis oper-

ators for time-frequency frames which are suitable for

representing the tonal and the transient components re-

spectively. Specifically, the columns ofA1 contain atoms

with a high Q-factor (or, well localized in frequency),

and the columns of A2 contain atoms that are well lo-

calized in time. Using the the high-Q atoms from A1,

we hope to obtain a parsimonious representation of the

tonal component. On the other hand, the time localized

atoms from A2 are more suitable for representing the

transient component. We note that these two frames

can be STFT frames or constant-Q frames [3, 40]. We

also assume that the frames are tight with unit frame

bound, i.e. A1A
T
1 = A2A

T
2 = I. However, we do not re-

quire that the frames be orthonormal bases, i.e., ATi Ai
may not be the identity operator but only a projection

operator.

2.3.1 Analysis Prior Formulation

Given the mixture signal y, the analysis prior formula-

tion for the ‘tonal+transient+residual’ decomposition

task is,

min
x1,x2

max
zi∈Ci
ti∈Di

1

2
‖y − x1 − x2‖22 + λ1

n∑
i=1

〈AT1 x1, z
i〉

+ λ2

m∑
i=1

〈AT2 x2, t
i〉 (A)

Here, x1, and x2 denote the time-domain tonal and

transient components respectively.

This formulation is referred to as an analysis prior

formulation because regularization via mixed norms is

imposed on the analysis coefficients of the components.

2.3.2 Synthesis Prior Formulation

In the setting described above, the synthesis prior for-

mulation is,

min
x1,x2

max
zi∈Ci
ti∈Di

1

2
‖y −A1 x1 −A2 x2‖22 + λ1

n∑
i=1

〈x1, z
i〉

+ λ2

m∑
i=1

〈x2, t
i〉. (S)

Here, x1 and x2 denote the frame synthesis coefficients

for the two components. In the time domain, the tonal

component is given by A1 x1 and the transient compo-

nent is given by A2 x2.
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3 Description of the Algorithms

3.1 A General Algorithm

Note that both the analysis and synthesis prior formu-

lations are of the form

min
x1,x2

max
zi∈Ci
ti∈Di

J(x1,x2, z
1, . . . , zn, t1, . . . , tm) (24)

where J(x1,x2, z, t) is convex with respect to xi’s and

concave with respect to zi’s and ti’s. In this setting,

a general primal-dual algorithm is provided in Algo-

rithm 2.

Algorithm 2 A Primal Dual Algorithm

Initialize xi ← 0, x̂i ← 0, x̄i ← 0, zj ← 0, tk ← 0, for
i = 1, 2, j = 1, . . . , n, k = 1, . . . ,m.
repeat

(z, t)← argmax
vi∈Ci
ri∈Di

−
1

2 γ

(
n∑
i=1

‖zi − vi‖22 +
m∑
i=1

‖ti − ri‖22

)

+ J(x̄1, x̄2,v, r) (D)

(x1,x2)← argmin
u1,u2

1

2 γ

2∑
i=1

‖xi − ui‖22 + J(u1,u2, z, t)

(P)

x̄i ← 2xi − x̂i, for i = 1, 2.
x̂i ← xi, for i = 1, 2.

until convergence

Algorithm 2 is an adaptation of the primal-dual al-

gorithm proposed in [7, 15]. For related earlier work,

with simpler, yet computationally heavier methods, we

also refer to [24,32].

The main steps of the algorithm consist of proximal

steps [12] on the primal and dual variables – these are

the steps labeled (P) and (D) respectively. In practice,

these steps alone also lead to a convergent scheme (see

[42]). However, adding a low cost correction step, that

is reminiscent of an ‘extragradient’ step [24], leads to a

formally convergent algorithm [7,15].

Choice of γ

Algorithm 2 contains a step parameter γ. In order to

ensure the convergence of the algorithm, we can take,

γ ≤
[
max

(
λ1

⌈
L1W1

sL1 sW1

⌉
, λ2

⌈
L2W2

sL2 sW2

⌉)]−1
. (25)

Here, (L1,W1) and (sL1 , sW1) determine the group size

and shift parameters for the tonal component (see Sec-

tion 2.2). Similarly, (L2,W2) and (sL2
, sW2

) are the as-

sociated parameters for the transient component.

The convergence of Algorithm 2 under this choice

of γ is discussed in Appendix A. Below, we derive the

steps (D) and (P) for the analysis and synthesis prior

formulations.

3.2 Steps for the Analysis Prior Formulation

Recall the analysis formulation in (A). In the follow-

ing, we denote the convexoconcave function in (A) as

JA(x1,x2, z, t), i.e.,

JA(x1,x2, z, t) =
1

2
‖y − x1 − x2‖22 + λ1

n∑
i=1

〈AT1 x1, z
i〉

+ λ2

m∑
i=1

〈AT2 x2, t
i〉 (26)

Let us now derive the steps of the algorithm.

Realizing (D) for the Analysis Prior Formulation

In this case, we need to solve decoupled constrained

minimization problems. Specifically, let

vi
∗

= argmin
vi∈Ci

1

2 γ
‖vi‖22 −

1

γ
〈vi, zi〉 − λ1 〈AT1 x̄1,v

i〉.

(27)

Note that the right hand side may be written as a

quadratic plus a constant term. Discarding the constant

(since it does not change the minimizer) we obtain,

vi
∗

= argmin
vi∈Ci

∥∥vi − (zi + γ λ1A
T
1 x̄1

)∥∥2
2
. (28)

Finally, since Ci is a closed and convex set, we can

express the minimizer as the projection of the term en-

closed in parentheses to Ci. That is, if PCi denotes the

projection operator onto Ci, we have

vi
∗

= PCi
(
zi + γ λ1A

T
1 x̄1

)
. (29)

Similarly, it follows that,

ri
∗

= PDi
(
ti + γ λ2A

T
2 x̄2

)
, (30)

where PDi denotes the projection operator onto Di.
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Realizing (P) for the Analysis Prior Formulation

Notice that the function to be minimized in this case is

convex and differentiable :

fA(u1,u2) =
1

2 γ

2∑
i=1

‖xi − ui‖22 + JA(u1,u2, z, t) (31)

The derivatives with respect to u1 and u2 should eval-

uate to zero at the minimizers u∗1, u∗2 :

0 = γ−1
(
u∗1 − x1

)
+ u∗1 + u∗2 − y + λ1

n∑
i=1

A1 zi (32)

0 = γ−1
(
u∗2 − x2

)
+ u∗1 + u∗2 − y + λ2

m∑
i=1

A2 ti. (33)

Rearranging, we obtain,

[
u∗1
u∗2

]
=

[
γ + 1 γ

γ γ + 1

]−1 [
x1 + γ

(
y − λ1

∑n
i=1A1 zi

)
x2 + γ

(
y − λ2

∑m
i=1A2 ti

)]
(34)

3.3 Steps for the Synthesis Prior Formulation

Recall the synthesis prior formulation in (S). In the

following, we shall denote the convexoconcave function

in (S) by JS(x1,x2, z, t), i.e.,

JS(x1,x2, z, t) =
1

2
‖y−A1 x1−A2 x2‖22+λ1

n∑
i=1

〈x1, z
i〉

+ λ2

m∑
i=1

〈x2, t
i〉. (35)

Realizing (D) for the Synthesis Prior Formulation

Once again this case leads to decoupled constrained

minimization problems. Specifically, we have,

vi
∗

= argmin
vi∈Ci

1

2 γ
‖vi‖22 −

1

γ
〈vi, zi〉 − λ1 〈x̄1,v

i〉 (36)

= argmin
vi∈Ci

∥∥vi − (zi + γ λ1 x̄1

)∥∥2
2

(37)

= PCi
(
zi + γ λ1 x̄1

)
(38)

Similarly, it follows that,

ri
∗

= PDi
(
ti + γ λ2 x̄2

)
. (39)

Realizing (P) for the Synthesis Prior Formulation

As in the analysis prior formulation, the function to be

minimized in this case is convex and differentiable :

fS(u1,u2) =
1

2 γ

2∑
i=1

‖xi − ui‖22 + JS(u1,u2, z, t) (40)

The derivatives with respect to u1 and u2 should eval-

uate to zero at the minimizers u∗1, u∗2 :

0 = γ−1
(
u∗1 − x1

)
+AT1 A1 u∗1 +AT1 A2 u∗2

−AT1 y + λ1

n∑
i=1

zi (41)

0 = γ−1
(
u∗2 − x2

)
+AT2 A2 u∗2 +AT2 A1 u∗1

−AT2 y + λ2

m∑
i=1

ti. (42)

For the sake of notation, let us define, Pi = ATi Ai. We

remark that, thanks to the Parseval frame assumption,

Pi is a projection operator that projects the coefficients

to the range space of ATi . Consequently, it is idempo-

tent, i.e. P 2
i = Pi.

Rearranging the equalities, we obtain,[
I + γ P1 γ AT1 A2

γ AT2 A1 I + γ P2

] [
u∗1
u∗2

]
=

[
x1 + γ

(
AT1 y − λ1

∑
i z
i
)

x2 + γ
(
AT2 y − λ2

∑
i t
i
)]

(43)

To solve this system, let us multiply both sides of this

equality by the matrix[
I + γ P1 −γ AT1 A2

−γ AT2 A1 I + γ P2

]
. (44)

This gives,[
I + 2γ P1 0

0 I + 2γ P2

] [
u∗1
u∗2

]
=

[
x1 − γ λ1 Z
x2 − γ λ2 T

]
+ γ

[
AT1
{
y +A1 (x1 − γ λ1 Z)−A2 (x2 − γ λ2 T )

}
AT2
{
y +A2 (x2 − γ λ2 T )−A1 (x1 − γ λ1 Z)

}]
=

[
c1
c2

]
(45)

where Z =
∑
i z
i, T =

∑
i t
i. To solve this system, we

note that

Pi
(
I + 2γ Pi

)
u∗i =

(
1 + 2γ

)
Pi u

∗
i = Pi ci. (46)

Therefore,

u∗i = ci −
2 γ

1 + 2 γ
Pi ci (47)
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Remark 8 Note that the equality PiA
T
i = ATi can be

used to arrange the expressions. Specifically, if we define

e1 = x1 − γ λ1 Z (48)

e2 = x2 − γ λ2 T, (49)

then,

c1 = e1 + γ

f1︷ ︸︸ ︷
AT1

(
y +A1 e1 −A2 e2

)
(50)

c2 = e2 + γ AT2

(
y +A2 e2 −A1 e1

)
︸ ︷︷ ︸

f2

. (51)

Finally, we have that Pi ci = Pi ei + γ fi. ut

4 Heuristic Primal-Dual Schemes

We previously noted that (see Remark 4), when the

groups, used to define the mixed norm, overlap, the

number of dual variables exceed the number of primal

variables. In practice, this may lead to memory prob-

lems, especially if the overlap between the groups is

high. In order to avoid this, we present below a heuris-

tic scheme based on the primal-dual algorithms dis-

cussed in Section 3. In the following, we restrict our-

selves to the analysis prior formulation. However, sim-

ilar schemes can be devised for the synthesis prior for-

mulation as well.

Now let z denote the dual variables associated with

AT1 x1 orAT2 x2. Also, letN (zj) denote a neighborhood-

vector associated with zj , likeN (zj) =
(
zj , zj1 , . . . , zjm

)
,

where m possibly depends on j. Suppose that there is

an asssociated neighborhood for each coefficient. In this

case, if the neighborhoods contain multiple elements,

there will be overlaps between the neighboorhoods of

different coefficients. We note that this is not necessar-

ily the case for the groups used to define mixed norms

in Section 2.1. For mixed norms, it is possible to have

a grouping system where the groups contain multiple

elements, but no two groups contain the same element.

For the setting described above, let Pj be an opera-

tor that maps z to a number, defined solely in terms of

Nj . Specifically, we experimented with Pj defined as,

Pj(z) = zj
1

max
(
‖N (zj)‖, 1

) , (52)

where ‖N (zj)‖ denotes some norm of the vector N (zj).

Specific choices are discused in Experiment 4.

Given Pj , we propose Algorithm 3, as a modifica-

tion of Algorithm 2. Here, the idea is to replace the

projections in the (D) step for the analysis prior formu-

lation (see Section 3.2) with Pj . One important differ-

ence is that, the projections in Section 3.2 map vectors

to vectors. Here, the operators Pj map vectors to sin-

gle coefficients. Another difference is that, Algorithm 3

requires significantly fewer dual variables than Algo-

rithm 2. This makes Algorithm 3 more efficient in terms

of memory usage.

Algorithm 3 A Primal-Dual Scheme
Initialize x1 ← 0, x2 ← 0, z← 0, t← 0. Set γ.
repeat

(x̄1, x̄2)← argmin
u1,u2

1

2 γ

2∑
i=1

‖xi−ui‖22 +
1

2
‖y−u1−u2‖22

+ λ1 〈u1, A
T
1 z〉+ λ2 〈u2, A

T
2 t〉 (P2)

z̄← z + λ1 γ AT1 (2x̄1 − x1)
t̄← t + λ2 γ AT2 (2 x̄2 − x2)
for all j do
zj = Pj(z̄).

end for
for all k do
tk = Pk(t̄).

end for
x1 = x̄1

x2 = x̄2

until convergence

We do not have a proof of convergence for Algo-

rithm 3. However, we have observed convergence in

practice.

Although Algorithm 3 is not formally convergent, it

has a very flexible form. In particular, one could modify

the operators Pj in order to adapt the algorithm to dif-

ferent structures or trends that are observed/expected

in the coefficients.

Algorithm 3 may be regarded as the primal-dual

counterpart of the algorithms proposed in [26] for it-

erative shrinkage type algorithms. In [26], the authors

modify ISTA by replacing the shrinkage step with op-

erators that have more desirable properties. Here, the

primal-dual algorithms do not contain shrinkage oper-

ators but instead contain projection operators. In line

with this difference, we propose to replace the projec-

tion operators with operators that mimick projections.

5 Experiments

Matlab code for the experiments is available at

‘ http://web.itu.edu.tr/ibayram/CoSep/ ’.

Experiment 1 (Restoring an Old Record)

The observed signal is an old recording of a tune

played by kaval. The signal has 22 × 104 samples at a
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sampling frequency of 32 KHz (i.e. it is 7 sec in du-

ration). The record has periodically occuring artifacts,

due to the particular method of recording. The artifacts

appear as vertical bars in the spectrogram (see Fig. 3a),

which can also be observed in the time-domain signal

(see the signal plotted with a thin line in Fig 4).

We model the kaval tune as a tonal component and

the artifact as a transient component. For the tonal

component, we use an STFT with a Hamming window3

of length 2048 samples (64 msec), and a Hop-size of 512

samples (16 msec). For the transient component, we use

an STFT with a Bartlett window of length 512 samples

(16 msec), and a Hop-Size of 256 samples (8 msec).

In terms of the terminology introduced in Section 2.2,

we choose the group sizes that define the mixed norms

as follows. For the tonal component we set L = 16,

W = 2, sL = 4, sW = 2. For the transient component,

we set L = 2, W = 16, sL = 2, sW = 4. Also, we set

λ1 = λ2 = 0.005 – these values are chosen manually

to ensure that the residual is very low and a decent

separation is achieved.

We employ Algorithm 2 for the analysis prior formu-

lation. The spectra of the resulting tonal and transient

components are shown in Fig. 3(b,c). Perceptually, the

tonal component is almost free of the artifacts, wheras

in the transient component, the tune is heard faintly.

We also show in Fig. 4 a time-domain excerpt, where

an artifact is visible around the middle of the original

signal (thin line). Observe that the tonal component

(thick line) has grasped the harmonic component from

the given distorted mixture.

We note that the restoration performance achieved

with the transient+tonal model is not easy to achieve

with a denoising formulation that involves a quadratic

data discrepancy term. Specifically, we could also set

the problem as a denoising problem of the form

min
x

1

2
‖y − x‖22 + λ ‖AT x‖ton, (53)

where ‖AT x‖ton is a mixed norm prior placed on the

analysis coefficients of x. However, in such a formula-

tion, the quadratic term would fail to provide a fair

description of the artifacts. On the other hand, the

transient+tonal decomposition models both the signal

and the artifacts better. In order to test this claim,

we used the same STFT frame and the same mixed

norm as the tonal component above. We selected λ

manually in order to achieve a fair amount of denoising

while fairly preserving the harmonics (which are weak

3 We actually normalize the windows in order to make the
STFT a tight frame. For the examples in this paper, the nor-
malized windows do not significantly differ from the reported
ones (i.e. Bartlett, Hamming, etc.), because of the redun-
dancy of the frames.
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Fig. 3 Restoration of an old recording. (a) The spectrogram
of the original recording – a tune played by kaval. The record-
ing contains artifacts which appear as vertical lines in the
spectrogram. Our goal is to eliminate these artifacts. (b) The
tonal component obtained by employing Algorithm 2 with
the analysis prior. The artifact is significantly suppressed. (c)
The resulting transient component. This component contains
mostly the artifacts. The tune is faintly heard.

to start with). The spectrogram of the denoised signal

is shown in Fig 5. Although the artifacts are somewhat

suppressed, the performance is poorer than that of the

transient+tonal decomposition formulation. Also, per-

ceptually, the denoising result is less pleasing compared

to the decomposition formulation4. ut

Experiment 2 (Speed Comparison with Existing Algo-

rithms)

4 The results can be listened to at
‘ http://web.itu.edu.tr/ibayram/CoSep/ ’.
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Fig. 4 Time-domain excerpts from the signals in Experi-
ment 1. Thin : Original Signal, Thick : Tonal Component.
The inharmonic component which occurs in the middle of
the excerpt due to the undesired artifacts of recording is sig-
nificantly suppressed in the tonal component.
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Fig. 5 The denoised signal obtained by modeling the de-
sired signal in Experiment 1 with a tonal component (see the
text). Observe that the denoised signal contains more of the
artifacts than the tonal component shown in Fig. 3b.

In order to evaluate the convergence speed of the

primal-dual algorithm, we compared its performance

with an accelerated ISTA algorithm, for the synthe-

sis prior formulation. Specifically, we use ‘FISTA’ [5]

described in Algorithm 4.

Algorithm 4 FISTA
Initialize the variables. Set t = 1.
repeat

wi ← zi + αATi (y −A1 z1 −A2 z2), i = 1, 2, (54)

w̃i ← wki , i = 1, 2, (55)

wk1 ← argmin
θ1

1

2
‖w1 − θ1‖22 + λ1 ‖θ1‖a, (56)

wk2 ← argmin
θ2

1

2
‖w2 − θ2‖22 + λ2 ‖θ2‖b. (57)

t̃←
1 +
√

1 + 4 t2

2
, (58)

zi ← wki +

(
t− 1

t̃

) (
wki − w

k−1
i

)
i = 1, 2, (59)

t← t̃ (60)

until convergence
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Fig. 6 Log distance to the limit with respect to iterations for
ISTA, FISTA and the proposed Primal-dual algorithm. The
iterations of (F)ISTA are not directly comparable to the iter-
ations of the primal-dual algororithm. In the text, we argue
that N iterations of ISTA correspond roughly to 2N/3 itera-
tions of the primal-dual algorithm in terms of computational
cost. Therefore 90 iterations of (F)ISTA cost (computation-
ally) as much as 60 iterations of the primal-dual algorithm.

We use the signal described in Experiment 1. For a

specific mixed norm definition, we employ three differ-

ent algorithms for the synthesis prior. These are, ISTA

(Algorithm 1), FISTA (Algorithm 4) and the primal-

dual algorithm (Algorithm 2). First, we ran each al-

gorithm for 5000 iterations, in order to reach approxi-

mately their limit. Then, we monitored the distance to

these estimated limits as iterations progress. The natu-

ral logarithm of these distances (normalized so that the

norm of the associated limit is unity) are depicted in

Fig. 6.

We note that the computational cost of the iter-

ations are different for (F)ISTA and the primal-dual

algorithm, therefore this graph should be interpreted

with care. Below we provide an approximate compari-

son between the computational costs of the iterations

of the algorithms.

For FISTA, the proximal maps in (56) and (57) can

be realized using an iterative scheme [2]. Although this

leads to iterations within iterations, and therefore is

not desirable, we observed that nevertheless, few inner

iterations (as few as 5) are sufficient to approximately

realize (56) and (57) in practice. Each of these inner it-

erations involve additions and some simple projections.

Compared to a forward or inverse STFT, these are rel-

atively low cost operations. Neglecting the cost of these

inner iterations, it can be argued that the main cost

of an iteration is proportional to the number of for-

ward and inverse STFTs. We observe that each iter-

ation of FISTA requires two forward and two inverse

transforms, adding to a total of four ‘transforms’. A

similar argument can be made for ISTA.

For the primal-dual algorithm, we can similarly ar-

gue that the main cost is again due to the number of

STFTs. We observe that each iteration can be realized
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with two forward and four inverse STFTs, adding to a

total of six transforms.

Comparing the number of transforms for the two

types of algorithms, we can say that an iteration of the

primal-dual algorithm requires 3/2 times more compu-

tational power than an iteration of (F)ISTA. There-

fore, we should really be comparing N iterations of

ISTA/FISTA with 2N/3 iterations of the primal-dual

algorithm. The grid lines in Fig. 6 facilitate this com-

parison. We observe that 60 iterations of the primal-

dual algorithm takes us closer to the limit than 90 it-

erations of (F)ISTA.

Although the primal-dual algorithm converges faster

(per computation) compared to FISTA, we think that

FISTA performs acceptably for the synthesis-prior for-

mulation. However, this is not the case for the analy-

sis prior formulation. For FISTA applied on the analy-

sis prior formulation, the main issue is the realization

of the proximal maps (56), (57). As in the synthesis

prior formulation, these could be achieved with an it-

erative scheme (see [1]) – leading to inner iterations

within outer iterations. However, in this case, each in-

ner iteration itself involves a forward as well as an in-

verse transform, and the cost of an ISTA type algorithm

grows rapidly. We note that applying FISTA to these

inner iterations as well (as done in the TV ‘denoising’

step in [4]) would not totally solve this problem since

even a few inner iterations require multiple STFTs. In

contrast, the primal-dual algorithm avoids these prob-

lems. Hence, we think that the primal dual approach is

especially suitable for analysis prior formulations.

As a final remark, we should note that the analy-

sis of cost above for both the primal dual and (F)ISTA

is a rather crude one. The neglected parts do also have

costs in practice. Therefore the convergence speed com-

parison should be interpreted with caution.

Experiment 3 (Separation of Ney and Darbuka)

We have at hand a mixture signal that consists of a

‘ney’ tune, accompanied by ‘darbuka’ (a percussion in-

strument). Our goal is to separate the two components.

The signal has 33×104 samples at a sampling frequency

of 22 KHz (i.e. it is 15 sec in duration).

In order to separate the two components, we model

the ney tune as a tonal component, the darbuka part

as a transient component and employ Algorithm 2. We

consider both the analysis and the synthesis prior for-

mulations in order to see their differences/similarities.

We use the same parameters for the analysis and syn-

thesis prior formulations. For the tonal component, we

use an STFT with a Hamming window of length 1024

samples (47 msec) and a Hop-size of 256 samples (12

msec). We use the same mixed norms as in Example 1.

We also set λ1 = 0.005, λ2 = 0.006.
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Fig. 7 Separation of the components of a musical signal. (a)
The spectrogram of the mixture signal. The signal is com-
posed of a tune played by ney, accompanied by darbuka.
The input SNR for the ney (‘tonal’) and darbuka (‘transient’)
components are 10.52 dB and -10.52 dB respectively. Notice
that the two SNRs are related by a factor of -1. (b,c) The
tonal and the transient component obtained by the analysis
prior formulation (SNRs are 16.41 and 5.72 dB respectively).

For the analysis prior formulation, Algorithm 2 pro-

duces the two components whose spectrograms are shown

in Fig. 7(b,c). For the synthesis prior, the solution gives

us the STFT coefficients of the components. These co-

efficients are shown in Fig. 9(a,b). Using these coef-

ficients, we reconstruct the time-domain components.

The spectrograms of the resulting time-domain compo-

nents are shown in Fig. 9(c,d).

We note that although the analysis prior frame coef-

ficients (Fig. 7(b,c)) and the synthesis prior coefficients
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Fig. 8 Time-domain excerpts from the signals in Experi-
ment 3. (a) Original signal (thick) and the residual (thin),
(b) the tonal component for the analysis prior, (c) the tran-
sient component for the analysis prior.

(Fig. 9(a,b)) look quite different, the time-domain com-

ponents do not show a marked difference. This is also

evident from a comparison of Fig. 7(b,c) and Fig. 9(c,d).

This similarity is somewhat contrary to our expecta-

tions, since the analysis and synthesis prior formula-

tions are not equivalent when the frames are redun-

dant [14]. Increasing the redundancy of the frames in-

creases the dimension of the nullspaces of the synthe-

sis operators and therefore, the steps labeled (P) for

the analysis and synthesis prior formulations can lead

to different outcomes. In this regard, we expected the

difference between the analysis and the synthesis prior

solutions to increase with increasing redundancy. How-

ever, even though we increased the redundancy until

memory problems start to occur, we have not been

able to see a significant difference between the solutions

(see [11] for a recent interesting discussion – also [6] in-

cludes a comparison of the analysis and synthesis prior

formulations for a reconstruction problem where data

is incoherently sampled).

A similar observation could be made for the time

domain signals in Fig. 8,10 as well. Both the analysis

and synthesis formulations have achieved a fair decom-

position. Specifically, the locally periodic components

are captured by the tonal component and the rapid

changes due to the addition of percussive elements are

captured by the transient component in the results of

both formulations. However, it is not easy to point to

unique characteristics or to distinguish the two results.

ut
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(b) Synthesis Prior Transient Component (Synthesis
Coefficients)
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(c) Synthesis Prior Tonal Component (Analysis Coefficients)
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Fig. 9 The spectrograms of the components in Experi-
ment 3, for the synthesis prior formulation. The resulting
SNRs are, 16.67 dB for the tonal component and 6.07 dB
for the transient component. (a,b) The synthesis coefficients
of the tonal and the transient component. (c,d) The analysis
coefficients of the tonal and the transient components. Ob-
serve that the spectrograms in (c,d) are similar to the ones
in Fig. 7(b,c).
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(a) Synthesis Prior Tonal Component
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Fig. 10 Time-domain excerpts from the signals in Experi-
ment 3. (a) the tonal component for the synthesis prior, (b)
the transient component for the synthesis prior.

Experiment 4 (Performance of Heuristic Algorithms)

In order to test the utility of the scheme in Section 4, we

employed Algorithm 3 for the problem in Experiment 3.

Recall that Algorithm 3 requires a definition of Pj .
In view of (52), this is achieved by selecting Nj and

defining ‖Nj‖. We select Nj as a rectangle in the time-

frequency plane, centered at zj , of length L and width

W , as in Fig. 2.

We took ‖Nj‖ to be a weighted `2 norm, where the

weighting is achieved by a 2D Bartlett window, cen-

tered around zj (or tj). The neighborhoods for the tonal

component are defined by L = 15, W = 3. The neigh-

borhoods for the transient component are defined by

L = 3, W = 15. In this setting, Algorithm 3 produces

the components shown in Fig. 11 (also see the time do-

main signals in Fig. 12).

Perceptually, the decomposition is less successful

compared to those obtained in Experiment 3. However,

the spectrograms of the resulting signals follow the de-

sired pattern.

ut

Remark 9 Experiments 3 and 4 aim to achieve a mu-

sically meaningful decomposition. In order to achieve

this, a simple model is imposed on the components and

the problem is formulated as a convex minimization

problem. This in turn leads to a simple algorithm. The

trade-off between the simplicity of the model/algorithm

can be likened to rate distortion optimized coding [33],

where a trade-off between distortion and bit-rate exists

– see also [23] in this line.

More audio examples can be found at

‘ http://web.itu.edu.tr/ibayram/CoSep/ ’ .

(a) Tonal Component Obtained by the Heuristic Scheme
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(b) Transient Component Obtained by the Heuristic Scheme
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Fig. 11 Components obtained by the Heuristic PD algo-
rithm, using a weighted `2 norm. (a) The tonal component
(SNR = 14.89 dB), (b) the transient component (SNR =
4.36 dB).

(a) Tonal Component Obtained by the Heuristic Scheme
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Fig. 12 Time-domain excerpts from the signals in Experi-
ment 4. The same excerpt as in Fig. 8 and Fig. 10 is used.
The residual is practically zero and is not shown. (a) The
tonal component obtained by the heuristic scheme, (b) the
transient component obtained by the heuristic scheme.

6 Conclusion

We considered the audio decomposition problem, where

the goal is to separate components with different char-

acteristics. Specifically, we focused on mixed-norm for-

mulations. By writing the mixed norms as support func-

tions, we derived equivalent saddle point problems for
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both analysis and synthesis prior formulations. Follow-

ing this, we proposed a primal-dual algorithm for the

resulting saddle point problems. We demonstrated the

utility of the algorithms on real audio signals. In partic-

ular, we showed that the algorithms can also be useful

for restoration tasks which involve additive distortions

that characteristically differ from the signal of interest.

The primal-dual algorithms, although formally con-

vergent, can require a lot of memory if the groups are

large and the overlap between the groups approach group

sizes. To address this issue, we also a derived flexible

heuristic scheme that can achieve similar decomposi-

tions with a better use of memory. The heuristic al-

gorithm is also of interest because of its flexible form.

This flexibility allows to quickly test different models

for the components, through a change of the neighbor-

hood shape and the utilized ‘norm’.

A Conditions of Convergence

The analysis/synthesis prior algorithms described in Section 3
have a single parameter γ that needs to be selected. Below
we provide an upper bound on γ that ensures convergence.

A.1 A General Problem and Algorithm

Consider the problem,

min
x

max
z∈K

1

2
‖y −Ax‖22 + 〈F x, z〉 (61)

where K is a closed convex set and F is a matrix. For this
problem, consider Algorithm 5.

Algorithm 5 A Convergent Primal Dual Algorithm

Initialize z0 ← 0, x0 ← 0, x̄0 ← 0, k ← 0.
repeat

zk+1 ← argmax
z∈K

−
1

2 γ
‖zk − z‖22 + 〈F x̄k, z〉. (62)

xk+1 ← argmin
x

1

2 γ
‖y−xk‖22 +

1

2
‖y−Ax‖22 +〈F x, zk+1〉

(63)

x̄k+1 ← 2xk+1 − xk.
k ← k + 1.

until convergence

Proposition 1 Let ρ be the spectral radius of F . If

γ ≤ 1/ρ, (64)

then the sequence (xk, zk) produced by Algorithm 5 converges
to a saddle point of the functional in (61).

Algorithm 5 along with its proof of convergence follows
by adapting the algorithm/discussion in [7,15]. Below we dis-
cuss how it relates to the synthesis and analysis prior formu-
lations/algorithms discussed in Section 3.

A.2 Relation Between the Problems

Let us now relate (A) with (61). For this, we define the super
vectors x and z as,

x =

[
x1

x2

]
, z =



z1

...
zn

t1

...
tm


. (65)

Also, define the matrices F , E as (recall the definition of
πKi

’s in Section 2.1),

F =



λ1 πC1
0

...
...

λ1 πCn 0
0 λ2 πD1

...
...

0 λ2 πDm


, E =

[
AT1 0
0 AT2

]
. (66)

In this setting, the problem in (A) is equivalent to the prob-
lem,

min
x

max
z∈C

1

2

∥∥y − [I I]x∥∥2
2

+ 〈F E x, z〉. (67)

where C is defined as the Cartesian products of the sets Ci
(i = 1, . . . , n) and Dj (j = 1, . . . ,m) – see (23). Also, ‘I’ de-
notes the identity matrix that applies to x1 or x2. Therefore,
in view of Prop. 1, we can say that the analysis prior algo-
rithm converges if γ < 1/ρ where ρ is the spectral radius of
F E. We shall consider specific cases in Section 5. Provided
that AT1 and AT2 are associated with tight frames, we have
that ρ(F E) ≤ ρ(F ). Thus, ρ(F ) is of interest.

Similarly, the synthesis prior problem is equivalent to the
problem,

min
x

max
z∈C

1

2
‖y −

[
A1 A2

]
x‖22 + 〈F x, z〉. (68)

Thus the synthesis prior algorithm converges if γ < 1/ρ where
ρ is the spectral radius of F . Therefore in both problems, we
see that estimating ρ(F ) is of interest.

For λ1 = λ2 = 1, ρ(F ) may be regarded as a measure of
how much the mixed norm groups overlap. Recall that when
mixed norms have overlapping groups, a specific coefficient
may appear in more than one group. To that end, the number
of elements in all of the groups exceed the number of total
time-frequency coefficients. The ratio gives an upper bound
(actually a tight one) on ρ(F ) (again, when λi = 1). This ratio
is easy to compute under the setting discussed in Section 2.1.

For a general choice of λ1, λ2, suppose that the group
sizes for the tonal component are L1, W1 and the shift pa-
rameters are sL1

, sW1
. Also, let the associated parameters for
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the transient component be L1, W1, sL2
, sW2

. In this case,
an upper bound on ρ(F ) is,

ρ(F ) ≤ max

(
λ1

⌈
L1W1

sL1
sW1

⌉
, λ2

⌈
L2W2

sL2
sW2

⌉)
(69)

In view of the discussion above, which guarantees convergence
if γ ρ(F ) ≤ 1, we note that the rhs of (69) may be taken as
γ−1.
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