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ABSTRACT

We consider the problem of reconstructing an audio signal from multiple observations, each of which is contami-
nated with time-varying noise. Assuming that the time-variation is different for each observation, we propose an
estimation formulation that can adapt to these changes. Specifically, we postulate a parametric reconstruction
and choose the parameters so that the reconstruction minimizes a cost function. The cost function is selected so
that audio signals are penalized less compared to arbitrary signals with the same energy. As cost functions, we
experiment with a recently proposed prior as well as mixed norms placed on the short time Fourier coefficients.
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1. INTRODUCTION

Suppose we have noisy observations of an audio signal x, as

y1(k) = x(k) + n1(k),

y2(k) = x(k) + n2(k),

where k ∈ Z denotes time and ni’s denote noise terms with possibly different and unknown time-varying charac-
teristics. In this paper, we consider the problem of combining the information from such multiple observations
to estimate the original signal.

As an example, spectrograms of two noisy observations are shown in Fig.1. The noise terms affect the signal
of interest in different instances in time. Note that, because the noise variance varies with time, it is not desired
to ‘denoise’ the observations with an off-the-shelf denoising algorithm that might have stationarity assumptions.
Rather than resorting to such preprocessing, we formulate the reconstruction problem as a minimization problem.

One approach to construct a cost function might be to employ sums of

(i) data terms, penalizing deviations from the observations,
(ii) regularization terms, that penalize the deviation from a prior model.

In such a setting, it is desirable to employ time-varying weights for data terms of the different observations,
because the validity of the observations depend on the time-variation of the noise terms. Normally, one could
weight the distances from the observations based on the noise level. But the noise characteristics are unknown,
therefore it is not obvious how to choose the weights. To avoid this difficulty, we do not include such data terms
in our formulation. Instead, we postulate a parametric reconstruction and impose constraints on the parameters
in order to make use of the properties that the reconstruction is expected to have. Specifically, the reconstruction
we propose for the problem outlined above is

x̂(k) = α̂1(k) y1(k) + α̂2(k) y2(k), (1)

where,

(α̂1, α̂2) = argmin
α1,α2

g

(
y1(k)α1(k)+y2(k)α2(k)

)
+λ
(
TV(α1)+TV(α2)

)
, subject to

{
α1(k) + α2(k) = 1,

αi(k) ≥ 0.
(2)
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(a) Noisy Observation - 1, SNR = 14.96 dB (b) Noisy Observation - 2, SNR = 15.41 dB
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Figure 1. Spectrograms of (a) First Observation, (b) Second Observation. Notice that the noise terms in the two obser-
vations contaminate different portions of the desired signal. However, the time-varying noise variance information is not
provided. Our goal is to reconstruct the original signal from these observations.

Here, the function g(·) penalizes deviations from spectral sparsity of its argument, and the TV term denotes the
total variation of its arguments. We experimented with different g(·) functions as well as different variants of
total variation. Note that the constraints on αi(k), for each k, ask that we take a convex combination of the
observations. If g(·) is a functional that has a minimum at zero, then the best linear (or, even affine) combination
will be zero (as discussed further in the following). Employing a convex combination instead of a linear or affine
combination, we avoid the zero solution. But this is not the sole reason behind restricting αi’s. In Section 2.1,
we provide further motivation for this constraint through the discussion of a simpler problem.

Related Work

The formulation described above may be regarded as an instance of a beamforming formulation (see Refs. 1,2,3
for an overview). Beamforming typically involves multiple sensors recording data from one or multiple sources.
When the sensor positions as well as the source direction is known, the challenge is to combine the multiple
observations to form a close estimate of the source. An interesting formulation for this problem, which was
employed in Refs. 4, 5, can be described as follows. Put briefly, the formulation applies an adaptive filter to
each sensor observation and then sums the filtered observations to produce an output. The filter coefficients are
chosen so as to minimize the expected output power subject to side constraints. The side constraints are imposed
in order to ensure that the signal of interest is preserved. By employing stochastic approximations to the terms
that appear in the solution, Frost proposed a beamformer in Ref. 5. Griffiths and Jim showed in Ref. 6 that
the beamformer proposed in Ref. 5 can be rearranged as the sum of two beamformers that operate in parallel
on the input. One of these beamformers is fixed and supplies the signal from the direction of interest, whereas
the other beamformer helps reduce the total power. The formulations discussed above usually assume that the
source/sensor positions are known. Cox et al.7 discuss modifications to the formulations so that slight deviations
from such prior information do not lead to significant degradation of the beamformer output. This is achieved by
incorporating terms that penalize the sensitivity of the beamformer output to such prior location information.
More recently, Parra and Alvino8 combine ideas from beamforming and blind source separation. Specifically,
for a problem that involves multiple sources and multiple sensors, they aim to separate the sources. For this,
they consider cost functions proposed originally for blind source separation, subject to constraints derived from
classical beamforming methods. We note that the problem discussed here does not fit well to this last scenario,
since we do not assume that the noise components behave as coherent sources that act on the sensors.

Relation with the Proposed Formulation

We now briefly describe the approach in Ref. 5 and relate it to the proposed formulation. In the setting above,
which assumes given two noisy observations, the idea in Ref. 5 is to apply filters hi(k) to the observations yi(k)
and sum the filtered outputs to obtain the estimate as,

x̂(k) = y1(k) ∗ h1(k) + y2(k) ∗ h2(k). (3)



(a) The minimum norm affine combination
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Figure 2. For a fixed value of the time-variable k, the proposed formulation asks that we look for the minimum norm linear
combination of y1(k), y2(k) subject to constraints. This is achieved by asking that the output be given by α1(k) y1(k) +
α2(k) y2(k), and restricting αi(k)’s to lie in certain sets. (a) For fixed k, if we ask that αi’s sum to unity, this is equivalent
to asking that the vector (α1, α2) lie on the dashed line. With this constraint, the minimum norm linear combination
yi’s will be zero, unless y1(k) = y2(k). (b) If we further ask that αi ≥ 0, this reduces the infinite dashed line in (a) to
a segment in the first orthant (shown as a dashed segment). Under this additional constraint, the minimum size linear
combination will be zero only if sgn

(
x1(k)

)
6= sgn

(
x2(k)

)
.

The formulation models the signal of interest and the noise components as uncorrelated stochastic processes,
where the noise terms are also assumed to be zero mean. The sum of the filters hi(k) are constrained to be equal
to some fixed filter h(k). This constraint allows to express the output as,

x̂(k) = x(k) ∗ h(k) +

[
n1(k) ∗ h1(k) + n2(k) ∗ h2(k)

]
. (4)

Now assume that the source x(k) and the noise terms ni(k) are independent stationary processes. Under these
assumptions, we can express the expected power as,

E
(
x̂2(k)

)
=

∑
n,l

h(n)Rx(n− l)h(l)

+

 2∑
i=1

∑
n,l

hi(n)Ri(n− l)hi(l)

 ,

where Rx and Ri denote the autocorrelation functions of x and ni respectively. In this expression, the first term
inside the parentheses is independent of the choice of the filters hi, since h is fixed. But the second term is
a non-negative term that is due to noise and is a function of hi’s. Therefore, minimizing the expected output
power by a proper choice of hi is expected to reduce the power of the noise terms and not the source. Based on
this observation, the beamformer in Ref. 5 aims to adaptively minimize the total output power by varying the
coefficients of hi’s slowly in time.

One attempt to adapt this scheme to a deterministic setting might be to try to minimize the total output
power and allow the coefficients of hi to vary with time. However, this approach has a shortcoming. Specifically,
suppose that each hi is a single tap filter, so that the output is formed as in (1), along with the constraint
α1(k) + α2(k) = 1, for all k (as also required by Lacoss4). Now if zero is also a minimum of the function
g(·) (which it is, for the functions used in this paper), the best choice of αi(k) will set x̂(k) to zero, provided
y1(k) 6= y2(k). This is demonstrated in Fig. 2a. If there are no further constraints on αi(k), this in turn leads
to a zero reconstruction for all k. Such a behavior is avoided by the formulation in (1). Instead of an affine
combination, the formulation seeks the best convex combination, by further constraining αi’s to be non-negative
(see Fig. 2b). We note however that this is not the main motivation behind employing the convex combination.
A more detailed treatment is provided in the sequel.

2. PROBLEM FORMULATIONS

We noted in the Introduction that the formulation is based on a parametric reconstruction. In order to motivate
this parametric reconstruction, we start by considering a simple problem.



2.1 Estimating a Constant From Noisy Observations

Suppose we have K observations of a constant Θ as

yi = Θ + σi ni, for i = 1, 2, . . . ,K. (5)

where ni’s denote unit variance, zero-mean, independent random variables. Given the observations, we form the
estimate of Θ as a linear combination of yi’s as,

Θ̂ =
[
y1 . . . yK

]︸ ︷︷ ︸
yT

α1

...
αK


︸ ︷︷ ︸

α

(6)

We are interested in the choice of α that minimizes E
(
|Θ− Θ̂|2

)
. Note that,

E
(
|Θ− Θ̂|2

)
= Θ2 − 2 Θ2

K∑
i=1

αi + αT Rα, (7)

where

R = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
K

)
+ Θ2

1 . . . 1
...

. . .
...

1 . . . 1

 . (8)

Setting the gradient with respect to α to zero, we see that the best choice α̂ is the solution of,

R α̂ = Θ2

1
...
1

 . (9)

It can be checked that

α̂ =
1

Θ−2 +
∑K
i=1 σ

−2
i


σ−21

σ−22
...

σ−2K

 (10)

satisfies (9). Observe that with increasing Θ2, the best linear combination tends to a convex combination of
the observations, where the weights are inversely proportional to the noise variance of each observation. In the
following, we will use this observation as a guideline to formulate the reconstruction problem.

2.2 Adapting to the Current Problem

We now consider the general version of the problem introduced in the beginning of the paper. Instead of two,
let us have K observations,

yi(k) = x(k) + ni(k), for i = 1, 2, . . . ,K. (11)

We will propose two formulations. The first one will not include any regularization term applied on αi’s,
and therefore no assumption on their behavior. The second one will assume that the variation of the noise
characteristics will be slow and employ this knowledge by including terms that penalize the time-variation of
αi’s.



Formulation without Regularization Terms

In view of the discussion in Sec. 2.1, we seek an estimate of x(k) in the set of convex combinations of yi(k)’s.
For this, define,

xα(k) =

K∑
i=1

αi(k) yi(k).

where αi(k)’s are weights to be determined. Observe that the reconstruction xα(k) is a function of αi(k)’s. In
order to choose the ‘best’ αi(k)’s, we need a criterion or cost function. Now, let g(·) be a non-negative functional
that favors an audio signal over noise. By this, we mean that if y and z are two signals with equal energy, where
y is an audio signal and z is some noise signal, then g(y) ≤ g(z). In a broad sense, one could think of g(·) as
defining a prior distribution p(·) of the form p(·) ∝ e−g(·). For signals with fixed energy, this prior distribution
is expected to assume higher values for audio signals. Given such a function, we choose αi(k) as

α̂ = argmin
α

g
(
xα(k)

)
, subject to

{∑K
i=1 αi(k) = 1,

αi(k) ≥ 0, for i = 1, 2, . . . ,K.
(12)

We experimented with different g(·) functions. Specifically, we used the prior introduced in Ref.9, as well as
mixed norms10 placed on the short time Fourier transform coefficients. The rationale behind these choices for a
cost function is the expectation that the spectrogram of the audio signal will be roughly sparse, or sparse with
a structured appearance – see Refs. 11,12,13,14, for recent, related works.

The functionals mentioned above are convex. Thanks also to the convexity of the constraints in (12), this
implies that the reconstruction is obtained by solving a convex minimization problem. The special forms of the
functionals also allow to express the problem in (12) as a saddle point problem, for which convergent algorithms
are available. The details are provided in Sec. 3,4.

Formulation with Regularization Terms on αi’s

We noted that we do not assume knowledge about the noise characteristics of the different observations. If,
however, it is known that the noise characteristics change slowly over time, this knowledge can be incorporated
into the formulation. In that case, it can be argued that the best αi(k)’s should vary slowly in time as well. This
suggests an update of the formulation for estimating the best αi(k)’s as,

α̂ = argmin
α

g
(
xα(k)

)
+ λ

K∑
i=1

∥∥Dαi∥∥, subject to

{∑K
i=1 αi(k) = 1,

αi(k) ≥ 0, for i = 1, 2, . . . ,K.
(13)

where, ‘D’ is a difference operator that maps αi(k) to di(k) = αi(k) − αi(k − 1). The norm ‖ · ‖ used in the
formulation penalizes the deviation of di(k) from zero. When it is taken as the `1 norm, we get TV regularization.
We have experimented with TV as well as the `2 norm for ‖ · ‖, but we will present results based on the latter
choice. We demonstrate in Sec. 5 that including this regularization term improves the performance.

3. RELATION WITH A SADDLE POINT PROBLEM

3.1 A Generic Saddle Point Problem

In the following, we will rewrite the problem formulation in (13) as a saddle point problem. Specifically, we will
see that it can be expressed as an instance of the generic saddle point problem given as,

min
α∈A

max
z∈Z
〈Lα, z〉, (14)

where A, Z are closed convex sets and L is a linear operator. There are numerous algorithms that are proposed
for such problems, see e.g. Refs.15, 16, 17, 18, 19. In particular, an algorithm presented in Refs. 17, 18, 19 takes
the form,



Algorithm 1 A Saddle Point Algorithm17,18,19

Initialize α0, ᾱ0, z0 ∈ D. Set γ ≤ 1/σ(L). B Initialization
for n ≥ 0 do
zn+1 ← PZ

(
zn + γ L ᾱn

)
αn+1 ← PA

(
αn − γ LT zn+1

)
ᾱn+1 ← 2αn+1 − αn

end for

Here, PA(·), PZ(·), denote projection operators onto A and Z respectively. Also, σ(L) denotes the spectral
norm of L. In Section 4, we will adapt this algorithm to our problem. But first, we need to put (13) into the
form (14).

3.2 Rewriting the Original Problem

In order to express (13) as a saddle point problem, we need a few definitions. In the following, we will take g(·)
to be a mixed norm10 placed on the STFT coefficients of its input (for another alternative, see Ref. 9).

STFT Operator

Let S denote an STFT operator. Specifically, we think of S as an operator that maps a one-dimensional signal
x(n), to a two-dimensional array c(s, k), through the relation,

c(s, k) =
∑
n

x(n)w(n− kN) ejωs(n−kN), (15)

where w(·) denotes a real-valued time-localized window function and N is the ‘hop-size’ that determines the
redundancy of the transform. Notice that here c(s, k) actually represents a time-frequency image of the signal.
The first parameter s is related to frequency and k is associated with time. In general, for a fixed (s, k) pair,
c(s, k) is a complex number. However, we can also (and will do, in the rest of the paper) think of it as a real
vector with two components (the real and imaginary parts). Consequently, the transpose of S is obtained as
follows. For x′ = ST c, we have

x′(n) =
∑
s

∑
k

[
Re{c(s, k)} cos

(
ωs(n− kN)

)
+ Im{c(s, k)} sin

(
ωs(n− kN)

)]
w(n− kN) (16)

= Re

{∑
s

∑
k

c(s, k)w(n− kN) e−jωs(n−kN)

}
. (17)

Mixed Norm

Given a two-dimensional (vector) array c(s, k) as described above, the mixed norm definition we will use in this
paper is,

‖c‖2,1 =
∑
s

∑
m

√√√√M−1∑
l=0

∣∣c(s,mM + l)
∣∣2. (18)

Here, M may be regarded as a parameter of the mixed norm. If c is the time-frequency map of an audio signal
and e is an arbitrary two-dimensional array with the same energy, ‖c‖2,1 is expected to be smaller than ‖e‖2,1.
For further discussions, as well as a more general investigation of mixed norms in this context, we refer to Ref.10.
We note that if we take the group size M as one, the norm above becomes the `1 norm of the coefficients.

Notice that the mixed norm defined above actually is the sum of the `2 norms of groups of coefficients, where
M denotes the group size. From this observation, it follows that∗

‖c‖2,1 = max
t∈T
〈c, t〉 (19)

∗More generally, the mixed norm as defined here is sublinear, from which the same conclusion follows – see Ref. 20,
Chp.C.



for a special choice of the set T – see e.g. Ref. 21. This allows us to express g(x) as,

g(x) = max
t∈T
〈S x, t〉.

Regularization Term

The regularization term applies on the unknowns of the formulation, namely αi(k). The particular regularization
term we consider in this paper penalizes the differences ‘αi(k) − αi(k − 1)’. To ease notation, let us define the
time-varying vector

α(k) =

α1(k)
...

αK(k)

 . (20)

Also, let D be an operator defined so that

d(k) = Dα(k) =

 α1(k)− α1(k − 1)
...

αK(k)− αK(k − 1)

 . (21)

Note that D takes the time-difference of each component. Now let us similarly define

p(k) =

 p1(k)
...

pK(k)

 . (22)

By constraining pi(k) to lie in different sets, the inner product of d and p, that is,

〈
d, p
〉

=

K∑
i=1

∑
k

di(k) pi(k), (23)

can be used to obtain different regularizers. Specifically, let PT be the set of all time-valued vectors such that if
p ∈ PT , then |pi(k)| ≤ 1 for all i and k. Then,

max
p∈λPT

〈
d, p
〉

= λ

K∑
i=1

TV(αi). (24)

Another regularization term we will use is the sum of the `2 norms of d(k). For this, let P`2 be the set defined
as,

P`2 =

p : ‖pi(k)‖2 =

√∑
k

|pi(k)|2 ≤ 1, for i = 1, 2, . . . ,K

 . (25)

Then, we define ‖ · ‖ so that
max
p∈λP`2

〈
d, p
〉

= λ ‖Dα(k)‖. (26)

In the following, we will consider P`2 in the development. We note that the other case, where PT is employed
instead, can be similarly developed.

Combining the Terms

Now let, Y denote the operator that maps αi’s to
∑K
i=1 yi αi. Using Y , the STFT operator S and the difference

operator D, define the operator

L =

[
S Y
D

]
. (27)



Also, let us define the sets

A =

{
α :

K∑
i=1

αi(k) = 1 ∀k, αi(k) ≥ 0 ∀i, k

}
, (28)

Z = T × λP`2 (29)

and the vector

z =

[
t
p

]
(30)

Under these definitions, the formulation (13) becomes equivalent to

min
α∈A

max
z∈Z
〈Lα, z〉, (31)

which is (14).

Recall that the algorithm requires the spectral norm of L in order to determine a convergent step size. Now
note that, σ(Y ) = maxi,k |yi(k)| and σ(D) = 2. Assuming that the STFT is self-inverting (or that ST S = I),

we have σ(L) ≤
√
σ(Y T Y ) + σ(DT D). Therefore, it suffices to set

γ =
1√(

maxi,k |yi(k)|
)2

+ 4
(32)

to ensure that the algorithm converges.

4. MINIMIZATION ALGORITHM

Based on the definitions given so far, Algorihm 1 takes the following form.

Algorithm 2 The Algorithm for (13)

Initialize α0, ᾱ0, t0, p0. Set γ ≤ 1/σ(L). B Initialization
for n ≥ 0 do
for all k do
r(k)←

∑N
i=1 yi(k) ᾱi(k) B r ← Y ᾱ

d(k)← ᾱ(k)− ᾱ(k − 1) B d← D ᾱ
end for
tn+1 ← PT (tn + γ S r)
pn+1 ← PλP`2

(pn + γ d)

s← ST t
for all k do
v(k)← pn+1(k + 1)− pn+1(k) B v ← DT p
for i = 1 : K do
ui(k)← s(k) yi(k) B u← Y T ST tn

end for
end for
αn+1 ← PA

(
αn − γ s− γ u

)
ᾱn+1 ← 2αn+1 − αn

end for

Remark 4.1. See Ref.21 for a discussion on how to realize the projection operator PT (·).
Remark 4.2. The projection operator PP`2

(t) applies on a time-varying vector, t(k), with K entries t1(k), . . . ,
tK(k) and it projects each ti(k) to the nearest time-varying vector in the unit `2 ball.



Remark 4.3. Projection onto the set A (defined in (28)) requires to project onto the unit K-dimensional simplex
(where K is the number of observations) – for a fast method, see Ref. 22.

Convergence of this algorithm is ensured since it is a special case of a formally convergent algorithm. Nev-
ertheless, it might be of interest to check whether the algorithm has reached a saddle point. We provide some
conditions below.

4.1 Conditions of Convergence

Recall the generic saddle point problem
min
α∈A

max
z∈Z
〈Lα, z〉. (33)

A point (α∗, z∗) such that α∗ ∈ A, z∗ ∈ Z is a solution of this problem if and only if

z∗ ∈ argmax
z∈Z

〈Lα∗, z〉, (34)

α∗ ∈ argmin
α∈A

〈α,LT z∗〉. (35)

It follows by the definitions so far and the properties of norms that (34) is equivalent to

t∗ ∈ T, 〈t∗, S Y α∗〉 = ‖S Y α∗‖2,1, (36a)

p∗ ∈ λP`2 , 〈p∗, D α∗〉 = λ ‖Dα∗‖. (36b)

Another alternative for (34) is

t∗ = PT
(
t∗ + S Y α∗

)
, (37a)

p∗ = PλP`2

(
p∗ +Dα∗

)
. (37b)

Let us now give an alternative expression for (35). For this, let f = Y T ST t∗ + DT p∗. Note that f is a

time-varying vector where f(k) =
[
f1(k) . . . fK(k)

]T
. In this setting, (35) is equivalent to

α∗ = PA
(
α∗ − f

)
. (38)

5. EXPERIMENTS

Experiment 5.1. Our first experiment is based on the noisy observations shown in Fig. 1. The underlying
clean signal is an excerpt from a stringed instrument recording. The sampling frequency is 32 kHz and the signal
duration is 3.125 sec (105 samples). The SNRs of the observations are 14.96 dB and 15.41 dB. The noise terms
affect the signals in different instances in time so that the original signal lies in the set of (time-varying) convex
combinations as described in the Introduction. In fact, the clean signal can be obtained easily by choosing
α1(k) = 1, α2(k) = 0 when the noise term affects the second observation and α1(k) = 0, α2(k) = 1 when
the noise term affects the first observation. Note that there are also regions where there is no noise affecting
the signal. For those samples, the choise of αi(k) does not matter – the sample value obtained by any convex
combination is equal to the original value.

For the cost function g(·), we used mixed norms with a choice of group size as M = 5 (see Sec. 3.2). Recall
that the cost function also involves an STFT operator. For that, we used a smooth window of length 1024
samples with a Hop-size of 256 samples. The window is chosen so that the resulting STFT is actually a Parseval
frame. We note that this choice of the cost function (including the STFT) is employed in all of the experiments.
Notice however that the sampling frequency for the last two experiments is different than the sampling frequency
for the first two experiments.

With no regularization (as in (12), or (13) with λ = 0), we obtain a reconstruction with an SNR of 38.33 dB
(see Fig. 3a). The samples of α1(k) are shown in Fig. 3c. Note that due to the constraints of the formulation,
we have α2(k) = 1− α1(k) for this example. Observe that the scheme fairly chose the correct observation most
of the time. For instance, around t = 1, Observation-1 is noisy (see Fig. 1) and the scheme correctly chose small



(a) No Regularization on αi(k), SNR = 38.33 dB
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(b) `2 Regularization on αi(k), SNR = 57.05 dB
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Figure 3. Left Column : Reconstruction with no regularization applied on αi(k). Right column : Reconstruction where
an `2 penalty term on αi’s is added for regularization. Top Row : Spectrograms of the reconstructions. Bottom Row :
α1(k). Note that α2(k) = 1 − α1(k) for this example. From the bottom row, we see that even with no regularization,
the scheme is fairly successful in choosing the correct observation. When the regularization term is added, the correct
observation is almost always selected by the formulation, without further knowledge about the signal.

values for α1(k), suppressing the weight of this noisy observation. However, we also observe that α1(k) varies a
lot as a function of k.

The formulation in (13), that also includes a regularization term, gives a reconstruction much closer to the
original signal (SNR = 57.05 dB – see Fig. 3b). The samples of α1(k) are shown in Fig. 3d. The scheme, for
almost all samples, succesfully chose the clean observation. Notice that the only prior information supplied to
the formulation is pertaining to the slow time-variation of the desired αi(k)’s; no specific information about the
clean signal is provided. The prior knowledge about the signal of interest is implicitly encoded in the choice of
the cost function g(·).
Experiment 5.2. We use the same clean signal as in Exp. 5.1. However, this time, we produce three observa-
tions, with a more complicated noise variance pattern. The noise standard deviations for the three observations
are shown in Fig 4, along with the spectrograms of the observations. Notice that the observations have different
SNRs.

The spectrogram of the reconstruction obtained by solving the regularized formulation is shown in Fig. 5a.
The reconstruction achieves an SNR of 26.48 dB. Also, Fig. 6 compares the obtained αi(k)’s with the ‘ideal’
αi(k)’s defined as,

αi(k) =
σi(k)−2

σ1(k)−2 + σ2(k)−2 + σ3(k)−2
, for i = 1, 2, 3. (39)

Note that this expression is obtained by setting Θ−2 to zero in (10). We think that the proposed formulation has
been successful in handling this case, although no prior noise information was provided. In fact, the proximity
of the ideal and obtained αi(k)’s suggest that we can work (10) backwards; that is, we can make use of the



(a) Time-Varying Noise Standard Deviation
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(c) Observation-2, SNR = 8.00 dB
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(b) Observation-1, SNR = 9.33 dB
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(d) Observation-3, SNR = 11.66 dB
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Figure 4. Experiment 5.2 involves three observations contaminated with different time-varying noise terms. Top Left:
Noise standard deviation for the three observations. The rest of the figures show the spectrograms of the observations.

(a) Reconstruction, SNR = 26.48 dB
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(b) Frost Beamformer, SNR = 14.72 dB
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Figure 5. Reconstruction results for Experiment 5.2.(a) Spectrogram of the reconstruction achieved by the formulation
using the observations shown in Fig. 4. (b) The reconstruction obtained by the Frost beamformer.

relation in αi’s and σi’s in (10) to obtain estimates of the relative noise level. Exp. 5.4 provides a more controlled
experiment on this point.

In order to compare the formulation with a well-known method, we employed the Frost beamformer5 – see the
Introduction for a brief explanation of this beamformer. In the Frost beamformer, we let the adaptive filters for
each observation have four taps. The spectrogram of the reconstruction is shown in Fig. 5b. For this example,
the Frost beamformer performed slightly better than a simple average. The proposed formulation leads to a
reconstruction that is better than that provided by the Frost beamformer, both in terms of SNR and perceptual
quality. We note that the proposed formulation, like the Frost beamformer, does not require intricate prior
information regarding the signal. However, in its current form, the proposed algorithm runs offline whereas the
Frost beamformer can be implemented as an online adaptive algorithm.



(a) Ideal vs. Achieved α1
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(b) Ideal vs. Achieved α2
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(c) Ideal vs. Achieved α3
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Figure 6. The ‘ideal’ αi’s obtained by setting Θ−2 to zero in (10) vs. αi’s obtained by the proposed algorithm. Note that
to obtain the ’ideal’ curves, we need to know the noise variances of each observation. This information is not supplied to
the proposed reconstruction algorithm.

Experiment 5.3. In this experiment, we use a speech signal to test the capabilities of the formulation
for a more complicated input. The noise variance patterns are similar to those used in Experiment 5.1. The
spectrograms of the two noisy observations are shown in the left panel of Fig. 7.

The reconstruction obtained using the proposed formulation with and without regularization are also shown in
Fig. 7. For reconstruction, we used the same parameters as in Exp. 5.1. Note that the difference between including
or not including a regularization term on αi(k)’s is similar to that in Exp. 5.1. However, the improvement is
less pronounced. In particular, observe that the variation of αi(k)’s in Fig. 8b is higher than those in Fig. 3d.
We think this might be due to the nature of the input signal. The stringed instrument has a cleaner spectrum
than speech and better fits the model implied by the mixed norm. Nevertheless, if we increase the weight of the
regularization parameter, the variations of αi(k)’s decrease.

Experiment 5.4. In this experiment, we use the same clean signal as in Experiment 5.3. But this time, we use
stationary noise processes. Our goal is to see whether the formulation is able to consistently recover the ‘best’
convex combination in this setting.

The (constant) noise variance for Observations-1,2,3 are σ2
1 = 10−4, σ2

2 = σ2
1/2, σ2

3 = σ2
1/3 respectively. The

SNRs of the observations are 14.47 dB, 17.48 dB, 19.33 dB. Note that if we set

α̂i(k) =
σ−2i

σ−21 + σ−22 + σ−23

, for i = 1, 2, 3, (40)

then,

α̂1(k) =
1

6
≈ 0.167, α̂2(k) =

2

6
≈ 0.333, α̂3(k) =

3

6
. (41)

If we use the same weight for the regularization parameter λ as in Exp. 5.3, the reconstruction has an
SNR of 22.83 dB. αi(k)’s used for this reconstruction are shown in Fig. 9a,b,c. Ideally, we would like to see



(a) Noisy Observation-1, SNR = 8.47 dB
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(b) Noisy Observation-2, SNR = 8.66 dB
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(c) No Regularization, SNR = 22.05 dB
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(d) With Regularization, SNR = 28.46 dB
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Figure 7. The spectrograms of the signals from Experiment 5.3. The clean signal is a speech signal. Similar noise patterns
as in Experiment 5.1 are used to produce the two observations – at each instant, at least one of the observations contains
no noise. The clean signal and the observations are shown on the left panel. The right panel shows (c) the reconstruction
obtained without a regularization term, (d) with an `2 regularization term. (f) The reconstruction obtained with the
Frost beamformer. Note that both regularized and non-regularized formulations proposed in this paper achieve a better
reconstruction than the Frost beamformer.

(a) α1 Obtained without Regularization
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(b) α1 Obtained with Regularization
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Figure 8. α1(k) for Experiment 5.3. Note that α2(k) = 1 − α1(k). (a) α1(k) obtained where no regularization term
is included in the problem formulation. Note that the main tendency is correct. (b) α1(k) obtained with an added `2
regularization term. The same weight as in Experiment 5.1 is used for weighting the regularization term. Observe that
adding the regularization term helped improve the selection of αi’s.



(a) α1 Obtained with a Small Regularization Weight
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(c) α3 Obtained with a Small Regularization Weight
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(b) α2 Obtained with a Small Regularization Weight
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(d) αi’s Obtained with a Large Regularization Weight
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Figure 9. αi(k)’s for Experiment 5.4. (a,b,c) Each figure shows three different αi(k)’s, obtained with no regularization
and their average values – see the text for the values. (d) If we increase the weight of the regularization term to 10× λ,
the formulation chooses αi(k)’s that are closer to being constant, and also to α̂i(k)’s (indicated by dashed lines).

constant αi(k)’s since noise is stationary for each observation. Although this is not the case, we observe that the
reconstruction puts more weight to the less noisy observations on average. In fact, when we look at the averages
of αi(k)’s, we find that mean

(
α1(k)

)
= 0.191, mean

(
α2(k)

)
= 0.325, mean

(
α3(k)

)
= 0.484. Notice that these

values are close those in (41). These average values are depicted in Fig. 9a,b,c with solid lines.

If we increase the weight of the regularization term to 10×λ, we obtain αi(k)’s as shown in Fig. 9d. Observe
that these αi(k)’s have a much lower variation. Moerover, we find that the means of αi(k) are closer to α̂i(k)’s.
Specifically, mean

(
α1(k)

)
= 0.168, mean

(
α2(k)

)
= 0.327, mean

(
α3(k)

)
= 0.505. The SNR of the reconstruction

is 22.32 dB. Although the SNR has not improved, the distribution of αi(k)’s are closer to our expectations.

6. CONCLUSION

We considered the problem of combining audio signals obtained using multiple sensors, when time-varying noise
terms with different behaviors contaminate the observations. In such a setting, if the characteristics of the
noise terms are known, it is feasible to employ this knowledge by including ‘data terms’ in a cost function, that
penalize deviations from the observations according to the noise level. However, lacking knowledge on noise
characteristics, we showed that a formulation of the problem as a convex minimization problem (without data
terms) also leads to good performance.

The cost function employed in the formulation requires the selection of an STFT operator and a ‘group
size’ for mixed norms.10 Once the cost function is selected, the only parameter of the algorithm is the weight
of the regularization term. Even with a weight of zero, we demonstrated that the algorithm can achieve a
reasonable reconstruction. However, including such regularization, especially if it is known that noise terms have
slowly-varying characteristics, usually gives a better reconstruction.

The formulation assumes that recorded observations are available and is meant to reconstruct the source
offline. However, the scheme may also be used as a base to derive real-time algorithms. One issue that might



arise in practice is that the data from the sensors might not be aligned, i.e. the observations might involve
delayed versions of the source, with different delays. In such a case, the algorithm requires the application of a
prior time-synchronization step (as in Ref. 23).
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20. Hiriart-Urruty, J.-B. and Lemaréchal, C., [Fundamentals of Convex Analysis ], Springer (2004).

21. Bayram, I. and Akyildiz, O. D., “Primal-dual algorithms for audio decomposition using mixed norms,”
Signal Image and Video Processing (2013).

22. Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T., “Efficient projections onto the `1 ball for learning
in high dimensions,” in [Proc. 25th Int. Conf. on Machine Learning ], (2008).

23. Valin, J.-M., Rouat, J., and Michaud, F., “Enhanced robot audition based on microphone array source
separation with post-filter,” in [Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IROS) ], (2004).


