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Directional Total Variation
İlker Bayram and Mustafa E. Kamasak

Abstract—This paper introduces a “directional total variation”
(TV) where the gradients are weighted depending on their direc-
tion. This directional TV has increased (and tunable) sensitivity
to variations at a selected direction. In order to demonstrate the
utility of the directional TV, we consider an image denoising
formulation. This formulation requires the realization of the
‘proximal map’ of the directional TV. Therefore, it is relevant
for more general inverse problem settings as well. We derive an
algorithm that solves the problem and use the algorithm to study
the effects of the parameters of the directional TV.

Index Terms—Total variation, directional total variation, image
denoising.

I. INTRODUCTION

Total variation (TV) is a measure of the variations in an
image. It penalizes local changes in the image regardless of
their direction. To that effect, TV has proved its utility as a
simple prior for piecewise smooth images with no globally
dominant direction. However, TV is not very suitable for
images with a dominant direction (such as the one in Fig. 1(a)).
In this paper, we consider a variation of TV that provides
a similarly simple prior for such images. We also describe
an algorithm that solves a related denoising problem. The
denoising problem is equivalent to realizing the ‘proximal
operator’ [1] associated with the proposed directional total
variation, therefore it can be useful in more general inverse
problems formulations [1]–[3].

In brief, the total variation of an image is computed by
summing the norms of the gradient. Essentially, our idea is
to first weight the gradients depending on their directions and
then sum their norms. Such a modification leads to increased
sensitivity to variations at a certain direction.

Previous Work

TV was first proposed to be used in image denois-
ing/restoration problems by Rudin, Osher and Fatemi [4]. The
authors also provided a denoising algorithm that is based on
a time-evolution equation. Later, Chambolle [5] considered
a cost function composed of a quadratic and a TV term.
He showed that the problem is essentially equivalent to a
projection and proposed an algorithm to obtain the minimizer
(see also [6] for an updated algorithm). Beck and Teboulle [7]
derived a similar projection algorithm (equivalent to the one
in [6]) and showed how to accelerate it by using information
from different iterations. Also of relevance is the work of
Esedoğlu and Osher [8] where they described a general TV
and studied its properties. We note that the directional TV
described in this letter does fit into the context described in [8].
However, [8] does not provide a denoising algorithm similar
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Fig. 1. (a) Texture image with a dominant direction. (b) Noisy texture image
used in the experiments (Gaussian, iid, SNR = 12.72 dB) (c) Details of the
TV denoised image (SNR = 22.52 dB). (d) Details of the Directional TV
denoised image (SNR = 23.86 dB).

to the one in this letter. Two recent studies were brought to
our attention by the reviewers [9], [10]. In [9], the authors
introduce a one-parameter family of regularizers through the
use of ‘support functions’ and present algorithms for typical
inverse problems. Reference [10] proposes a generalization of
TV so as to incorporate higher order derivatives. Although we
also view the directional TV as a support function, neither the
proposed directional TV nor the regularizers in [9], [10] are
special cases of each other.

Outline
In Section II, we discuss the isotropic (regular) TV and

provide the details on how to render it direction-sensitive.
Section III describes the denoising formulation and derives
an algorithm that solves the formulation. Experiments that
evaluate the proposed algorithm are provided in Section IV.
Section V concludes the letter.

II. DIRECTIONAL TOTAL VARIATION

A. Isotropic Total Variation
TV of a discrete-space image f(i, j) is defined as,

TV(f) =
∑
i,j

√(
∆1f(i, j)

)2
+
(
∆2f(i, j)

)2
(1)
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where ∆1 and ∆2 denote horizontal and vertical difference
operators:1

∆1 f(i, j) = f(i, j)− f(i− 1, j), (2)
∆2 f(i, j) = f(i, j)− f(i, j − 1). (3)

Note that TV in (1) can be rewriten as:

TV(f) =
∑
i,j

‖∆f(i, j)‖2 =
∑
i,j

sup
t∈B2

〈∆f(i, j), t〉 (4)

where ∆ is the linear operator defined as,

∆f(i, j) =

(
∆1 f(i, j)
∆2 f(i, j)

)
(5)

and B2 is the unit ball of the `2 norm.
The regular TV is isotropic because it is invariant to

rotations of the components of ∆ f . This is a consequence
of the `2 norm (or B2) appearing in (4).

B. Directional Total Variation

It is possible to obtain a directional total variation by
replacing B2 with some other set. In particular, an ellipse can
be used to increase the sensitivity to changes towards a certain
direction. If B2 is replaced by the ellipse, Eα,θ that is oriented
along the angle θ, with a unit length minor axis and a major
axis of length α > 1 (see Fig. 2(a)), the pseudo norm defined
by

TVα,θ(f) =
∑
i,j

sup
t∈Eα,θ

〈∆f(i, j), t〉 (6)

is more sensitive to variations along the major axis.
The directional TV of the image shown in Fig. 1(a), is

computed for different values of θ, while keeping α = 3.
The resulting function of θ is depicted in Fig. 2(b). Note that
the minimum value of the directional TV is obtained around
θ = −π/6, which coincides with the dominant direction of
the texture within the image. Also, observe that the curve in
Fig. 2(b) is smooth – slight deviations of θ from the minimum
value do not dramatically increase the value of the directional
TV. This can be a desired property especially when faithful
direction information is not available.

III. THE DIRECTIONAL TV DENOISING PROBLEM

Often, inverse problem formulations/algorithms require the
realization of the ‘proximal operator’ associated with the
signal prior [1]. Realizing the proximal operator is also of
interest per se, since it is equivalent to solving a denoising
problem. Specifically, in our case, we need to consider an
objective function with a directional TV:

f∗ = argmin
f

1

2
‖y − f‖22 + λTVα,θ(f), (7)

where y is the given noisy image (observation) and f∗ is the
denoised estimate.

In order to find a solution to (7), let us define a vector field
with two components as v(i, j) = [v1(i, j), v2(i, j)]T . Using

1We assume that the image is zero outside its boundaries.
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Fig. 2. (a) The ellipse Eα,θ used to define the directional TV norm. (b) The
value of the directional TV3,θ of the image shown in Fig. 1(a) as θ varies.

v(i, j), the directional TV can be written as:

TVα,θ(f) = sup
v(i,j)∈Eα,θ

〈∆ f, v〉 . (8)

Results of [5] and [8] indicate that y −∆T v∗ minimizes (7),
where

v∗ = argmin
v(i,j)∈Eα,θ

∥∥f − λ∆T v
∥∥2

2
. (9)

The problem is essentially equivalent to a projection. Let Rθ
and Λα denote the rotation and scaling matrices respectively
as:

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
, Λα =

[
α 0
0 1

]
. (10)

Note that Eα,θ and B2 are related as Eα,θ = Rθ ΛαB2.
Furthermore, let us now define the operators Rθ, Λα, that
act on the vector fields as

(
Rθ v

)
(i, j) = Rθ

(
v(i, j)

)
and(

Λα v
)
(i, j) = Λα

(
v(i, j)

)
. Using the fact that RT

θ = R−θ
and ΛT

α = Λα, TVα,θ can be expressed in the following forms:

TVα,θ(f) = sup
v(i,j)∈Rθ Λα B2

〈∆ f, v〉

= sup
v(i,j)∈B2

〈∆ f,Rθ Λα v〉

= sup
v(i,j)∈B2

〈Λα R−θ∆ f, v〉. (11)

Then, for

v∗ = argmin
v(i,j)∈B2

∥∥y − λ∆T Rθ Λα v
∥∥2

2
, (12)

y−λ∆T Rθ Λα v
∗ minimizes (7). Eq. (12) is also equivalent

to a projection. However, this time, the projections involve
disks rather than ellipses. Although one can devise an algo-
rithm based on projection onto ellipses (see for instance [11]),
we think this approach is simpler.

Henceforth, we take λ = 1 for simplicity. Generalization
to arbitrary λ is straightforward. Our goal is to minimize the
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function
C(v) = ‖y −Av‖22 (13)

where A = ∆T Rθ Λα, subject to v(i, j) ∈ B2 for all (i, j).
Suppose now that we have v(k) at the kth iteration. We would
like to find v(k+1) where each component v(k+1)(i, j) belongs
to B2, such that C

(
v(k+1)

)
≤ C

(
v(k)

)
. Suppose that ρ is a

constant for which ρ I−∆ ∆T is positive semi-definite (psd).
Then, it follows that, (α2ρ) I −AT A will also be psd. It can
be shown, by a majorization argument [3], that for

C(k)
(
v
)

=

∥∥∥∥[v(k) +
1

2α2 ρ
AT
(
y −Av(k)

)]
︸ ︷︷ ︸

ṽ(k)

−v
∥∥∥∥2

2

, (14)

if C(k)
(
v
)
< C(k)

(
v(k)

)
for some v, then C

(
v
)
< C

(
v(k)

)
.

Therefore, we might as well consider reducing the function
C(k) at the kth iteration, subject to v(i, j) ∈ B2. Notice
that C(k)(v) is separable with respect to the indices. The
minimizer, subject to v(i, j) ∈ B2, is given by,

v∗(i, j) = ṽ(k)(i, j)
1

max
{
‖ṽ(k)(i, j)‖2, 1

} . (15)

Algorithm 1 provides the pseudo-code for the general case,
with arbitrary λ, α, θ parameters to obtain f∗ in (7).

Algorithm 1 Image Denoising Using Directional TV
Input:λ, y, α, θ from (7)
Output:f∗ as in (7)
Require: ρ, a constant such that ρ I −∆ ∆T is psd.

vn(i, j)← 0 for n = 1, 2
κ← 1/(2 ρα2 λ2)
A← λ∆T Rθ Λα

for iter = 1 to MaxIter do
ṽ ← v(k) + κAT

(
y −Av(k)

)
for all (i, j) pairs do
v(i, j)← ṽ(k)(i, j) 1

max
{
‖ṽ(k)(i,j)‖2,1

}
end for

end for
f∗ ← y −Av

Accelerating The Algorithm

Algorithm 1 monotonically decreases the cost function in
(12). To that end, FISTA [7], and TwIST [12] can be adopted
to accelerate the convergence. An alternative is to choose ρ
such that 2ρ I −∆ ∆T is psd (i.e. reduce ρ by half – please
see the requirements in Algorithm 1). With such a choice of ρ,
if ρ I −∆ ∆T is not psd, the algorithm is no longer a descent
algorithm on (12) but it determines a sequence that converges
to the minimizer of (12) (see the conditions of convergence for
forward-backward algorithms [2]). In our experience, reducing
ρ by half accelerates the algorithm almost as much as TwIST
or FISTA.

IV. EXPERIMENTS

In order to demonstrate the utility of the proposed direc-
tional TV, experiments are performed with two images: 2

‘wood’ (Fig. 1(a)) and ‘bamboo’ (Fig. 3(a)).

Experiment 1. We obtain the noisy observation in Fig. 1(b)
by adding iid Gaussian noise to the ‘wood’ image (SNR =
12.72 dB). To denoise the observation, we make use of the
formulation in (7) for a TV and a directional TV regularizer.
In each case, the weight of the prior (λ) is selected so as to
maximize the SNR. For TV, we obtain an SNR of 22.52dB. For
the directional TV with α = 5 and θ = −0.15π, the SNR is
23.86 dB. We note that this value of θ minimizes the function
in Fig. 2(b). Details for both regular TV and the introduced
directional TV are shown in Fig. 1(c,d). We observe that the
artifacts which are clearly visible in the TV denoised image
are much weaker in the directional TV denoised image.

Experiment 2. We added iid Gaussian noise to the clean
bamboo image in Fig. 3(a) to obtain the noisy observation
in Fig. 3(b) (SNR = 13.55 dB). Once again we use the
formulation in (7), but this time we use the anisotropic TV3

and the directional TV as regularizers. The λ parameters are
chosen so as to maximize the SNR of the denoised image. In
this case, anisotropic TV denoising yields an SNR of 17.02 dB.
Choosing the parameters of the directional TV as α = 5,
θ = 0, we obtain a denoised image with SNR equal to
20.65 dB. Detail images are shown in Fig. 3(c,d). Observe
that the horizontal sticks look very smooth in the directional
TV denoised image. On the other hand, the string that ties the
bamboos together (appearing as a vertical feature) is washed
out in the directional TV denoised image in comparison to
the anisotropic TV denoised image. This is also evident from
the absolute error images shown in Fig. 3(e,f), where high
errors appear as black (the images are contrast enhanced). We
observe that the directional TV denoised image deviates from
the original around the vertical feature, which does not agree
with the provided θ direction. On the other hand, the error
distribution for anisotropic TV is more uniform.

Effect of Parameter Selection in Directional TV

We also investigated the effect of {α, θ} parameters of the
directional TV in terms of denoising performance. Fig. 4 illus-
trates the SNR values of the denoised images with different
α values as a function of θ for the setup in Experiment 2
(for each fixed {α, θ}, we search for the λ value that yields
the best SNR). We can see that for all values of α, the
highest SNR value is obtained around θ = 0, which gives
the dominant direction in the bamboo image. Small values of
α lead to poorer denoising performance, wheras higher values
of α lead to low SNR if the TV prior direction (θ) is not
chosen correctly. Therefore, one can talk about a trade-off

2Matlab code used in the experiments can be found at
http://web.itu.edu.tr/ibayram/DTV/.

3In terms of the terminology of Section II, the anisotropic TV of f is given
by ‖∆1 f‖1 + ‖∆2 f‖1. This corresponds to taking a square as the ‘Wullf
shape’ in [8].
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(e) (f)
Fig. 3. (a) Clean ‘Bamboo’ image, (b) Noisy bamboo image (SNR =
13.55 dB), (c) Detail from the image denoised using the anisotropic TV as
a regularizer (SNR = 17.02 dB), (c) Detail from the image denoised using
the proposed directional TV as a regularizer (SNR = 20.65 dB), (e) Absolute
differences of the original image and the anisotropic TV denoised image, (f)
Absolute differences of the original image and the directional TV denoised
image, The images in (e,f) are contrast enhanced for visibility and also inverted
so that black indicates high values.

between performance and robustness with respect to the prior
information.

V. CONCLUSION

In this paper, a directional TV and its use for image
denoising is described. For images with a dominant direc-
tion, denoising with directional TV is shown to outperform
isotropic/anisotropic TV in terms of SNR and visual quality.
We also observed that the parameters of the directional TV,
namely {α, θ}, have to be chosen carefully. Specifically, if the
prior information regarding the dominant direction (i.e. θ) is
not reliable, then a relatively small α should be chosen.

Note that, the directional TV described in this letter can
not be effective for denoising arbitrary images with no single
dominant direction. However, we can regard an arbitrary image
as a collection of patches where each patch has a single
dominant direction. Therefore, it is possible to extend the
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Fig. 4. SNR values for denoised bamboo images obtained with directional
TV with different α and θ parameters.

concept of directional TV by locally changing the directions of
the ellipses depending on the gradients. This approach could
improve/complement the work of Berkels et al. [13] where
rectangular objects are assumed to be present in the given
image. We plan to pursue this idea in future work.
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