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Denoising Formulations Based on Support
Functions

İlker Bayram

Abstract—We study a denoising formulation that consists of
a quadratic data term and a ‘support function’ acting as a
regularizer. We show that this abstract formulation covers a
number of popular denoising formulations. Making use of the
properties of support functions, we derive a characterization of
the minimizer. Given the characterization, we provide algorithms
for obtaining the minimizer for a number of different scenarios
of potential interest.

I. INTRODUCTION

Several denoising formulations involve the minimization of
a functional like

J(t) =
1

2
‖y − t‖22 + g(t), (1)

where ‘y’ is a given noisy observation of an underlying
original signal. Here, the first term, namely 1

2‖y − t‖22, is
usually called the data term and ensures that the denoised
estimate is not too far away from the observation. The second
term, g(t), reflects our prior information about the original
signal. A few popular formulations that follow this general
schema are,
(a) Analysis/Synthesis prior (for orthonormal transforms)

[25], [13], [8] : mint
1
2 ‖y − t‖22 + λ ‖t‖1.

(b) Analysis prior [5], [11], [30] : mint
1
2 ‖y− t‖22+λ ‖A t‖1

where A is a matrix.
(c) Mixed Norm (synthesis [23], [22] or analysis) prior :

mint
1
2 ‖y − t‖22 + λ ‖A t‖2,1.

(d) Total Variation [27], [5] : mint
1
2 ‖y−t‖22+λTV(t), where

TV(t) denotes the total variation of t, regarded as a one
or two-dimensional discrete-time signal.

(e) A variant of the ‘Elastic Net’ [35] : mint
1
2 ‖y − t‖22 +

λ1 ‖t‖1 + λ2 ‖t‖2.
Notice that the ‘prior information’ term, g(·), in all of these
problems1 is convex and satisfies g(c t) = c g(t) for c > 0.
The following result, which can be found in [18], leads to a
new perspective to look at these problems.

Proposition 1. Let g : Rn → R be a convex function that
satisfies g(c t) = c g(t) for c > 0. Then, there exists a convex
set K such that g(t) = supz∈K〈z, t〉.

The function ‘supz∈K〈z, t〉’, which will be denoted as
σK(t), is called the support function of K [18].
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1For the different functionals in the list, it is (a)λ ‖t‖1, (b)λ ‖A t‖1,
(c)λ ‖A t‖2,1, (d)λTV(t), (e)λ1 ‖t‖1 + λ2 ‖t‖2.

Proposition 1 can be used to relate the problems in the list
to the problem,

min
t

1

2
‖y − t‖22 + σK(t), (2)

for a proper choice of K. A fundamental result for (2) is,

Proposition 2. Let K be a closed, convex set. Then

argmin
t

1

2
‖y − t‖22 + σK(t) = y − PK(y), (3)

where PK(y) denotes the projection of y onto K.

A simple proof of this proposition is presented in Ap-
pendix A.

Proposition 2 allows us to consider as equivalent, the
minimization problem (2) and the projection problem onto K.
That is, if we know how to solve (2), then we can easily
project onto K. Conversely, if we know how to project onto
K, we can easily solve (2). It is this particular connection
that we would like to stress here. Even if we do not readily
have a one-step projection operator onto K, if we can devise
algorithms that can achieve the desired projection, we obtain,
equivalently, algorithms that solve (2). To that end, we derive
and present algorithms that solve instances of the problems
listed above.

In addition to deriving some known algorithms through
the discussed framework, we provide an algorithm for the
particular problem ‘analysis prior mixed norms’ (with A 6= I
in (c)) which has not been considered previously, as far as we
are aware. We also present a result (Proposition 3), related to
the elastic net variant, which has not appeared before.

Relation to Linear Inverse Problems

The minimization problem (2) is also relevant for linear
inverse problem formulations that require the minimization of

J(t) =
1

2
‖y −A t‖22 + g(t). (4)

where A is a linear operator and g(·) is a support func-
tion. Indeed, iterative methods derived using majorization-
minimization schemes [12] (also see [13] for an EM based
approach) ask to minimize functionals of the form

Jk(t) =
1

2
‖yk − t‖22 + g(t). (5)

at each iteration. Minimization of (5) also turns out to be
the backward step in forward-backward splitting algorithms
[7] for minimizing (4). The cost function in (4) appears in
dictionary learning as well (see e.g. [21] where the authors
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employ ‘hierarchical norms’ – they also provide a different
derivation of Algorithm 2.)

Finally, one can show that, if t∗ is a minimizer of (4), then
for z = AT

(
y −A t∗

)
,

argmin
t

1

2
‖z − t‖22 + g(t) (6)

also minimizes (4) (it is in fact equal to t∗). In words,
the minimizers of (4) are also the minimizers of a related
denoising formulation. Although this point does not lead to any
practical method (since we do not have access to t∗ to start
with), it implies that we can gain insight about the nature2

of the minimizers of (4) by studying the related denoising
problems, which are simpler.

Given a mixture signal y, which is a linear combination
of two components, methods based on the ‘morphological
diversity’ of the components (see e.g. [31], [4], [29] and the
references therein) aim to separate the components by exploit-
ing the differences in the distributions of their coefficients
when possibly different bases/frames3 are used. To that end,
the formulation

min
t1,t2

1

2
‖y − t1 − t2‖22 + ‖A1 t1‖a + ‖A2 t2‖b (7)

where A1, A2 are possibly different transforms and ‖·‖a, ‖·‖b
different norms, could also make use of the algorithms pre-
sented in this paper. In particular, we think that mixed norms
with different groupings could lead to interesting results. We
hope to pursue this in future research.

Upto differences in terminology, linear regression formu-
lations (with regularization for subset selection) also pose
minimization problems where the cost functions are similar
to J(·) in (4) (see [17], Chp 3). It is interesting to trace
the evolution of the ‘prior terms’, that is, g(·) in (4), in the
statistics literature. In order to improve ‘ridge regression’, for
which g(t) = λ ‖t‖2, Tibshirani proposes the ‘Lasso’, setting
g(t) = λ ‖t‖1 and he notes that this gives a regularization
where the minimizers of (4) have fewer non-zero elements
[32]. The introduction of ‘least angle regression’ (LARS) [10],
which allows computing the ‘lasso’ solutions for all values
of λ, hence also addressing the problem of the selection of
λ, sparks further research that leads to the modification of
the prior term. Yuan and Lin [33], adapt LARS for a prior
term, which is equivalent to what we call here ‘a mixed
norm with non-overlapping groups’ (see Section IV-D). Zhao
et al. [34], consider extensions such as ‘mixed norms with
overlapping groups’4 and hierarchical norms. Jacob et al. [20]
further extend this work, introducing norms which force more
parsimonious representations in terms of groups, compared
to mixed norms with overlapping groups. We provide a dis-
cussion about these norms using some concrete examples in
Section II.

2That is, see whether they are sparse, group-sparse or if certain hierarchies
between coefficients exist or not.

3It is not strictly required that the frames be different. One could make use
of the different distributions of the components alone.

4See also the work by Fuchs [14] that addresses the selection of the tuning
parameters by considering the dual problem.
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Fig. 1. Soft thresholding y with threshold λ may be regarded as the difference
of y from its projection onto λB∞ where B∞ is the unit `∞ ball. In the
figures above, the projection is denoted by p and the difference, y − p, by
t∗. Depending on the location of y, the result may be (a) sparse or (b) not.

Contribution

Our main goal in writing this paper is to promote the for-
mulation (2) that consists of a quadratic and a support function
acting as the signal prior. We demonstrate, for different cases,
that, once a minimization problem is recognized to follow this
schema, the characterization in Proposition 2 can be utilized
for devising algorithms that solve the problem. Besides the
development of new algorithms, Proposition 2 is also useful
for understanding the characteristics of the signal prior by an
investigation of the support set K. This sheds new light on
well-known operators, priors as well, and provides a new way
to think about these objects.

Outline

In Section II, we provide some simple examples to demon-
strate the norms discussed in the Introduction. Following that,
we discuss some generic denoising formulations and derive
algorithms for different scenarios in Section III. In Section IV,
we specialize these algorithms to the problems listed in the
Introduction. Experiments that demonstrate the use of the
algorithms along with discussions are provided in Section V.
Section VI is the conclusion.

II. SOME LOW DIMENSIONAL EXAMPLES

In order to gain some insight, consider the problem

min
t

1

2
‖y − t‖22 + λ ‖t‖1 (8)

where y ∈ R2. We note that ‖t‖1 = sup|z1|≤λ〈z, t〉 where
z ∈ R2. Therefore, by Proposition 2, we need to find the
projection of y onto λB∞ = {z ∈ R2 : |zi| ≤ λ} (call it p)
and subtract this projection from y. This is depicted in Figure 1
for two different cases. Notice that if y is in the shaded region,
then t∗ = y − p is ‘sparse’ (i.e. has only a single non-zero
component in this case). This example demonstrates how the
sparsity of the solution is associated with the dual ball (λB∞
in this case). That is, if the tangent to the boundary of the
dual ball at p is parallel to an axis, the solution t∗ has zero
coordinate on that particular axis (as in Figure 1a).
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Consider now the following mixed-norms defined on R3 :∥∥(x, y, z)∥∥
m1

=
√
x2 + y2 + |z|, (9)∥∥(x, y, z)∥∥

m2
=
√
x2/4 + y2 +

√
x2/4 + z2, (10)∥∥(x, y, z)∥∥

m3
=

1

2

(√
x2 + y2 +

√
x2 + z2 +

√
y2 + z2

)
.

(11)

The unit balls of these norms are shown in Figure 2(b,c,d).
Using these norms to regularize denoising problems lead
to solutions with different characteristics. Noting the sharp
corners or edges of the unit balls, we can see that the solutions
will be sparse or group-sparse. As in the 2D example above,
the characteristics of the norms can also be deduced from the
dual-balls. Considering Figure 2(f) for instance, the existence
of a flat region on the boundary parallel to the xy plane
implies that a number of solutions will be sparse with only a
z-component – this will be the case if the x and y coordinates
of the observation vector fall within the flat infinite cylinder,
parallel to the xy plane, obtained by extending the cylinder
along the z axis. Again in Figure 2(f), the existence of the
smooth region on the boundary parallel to the z axis implies
that a number of solutions will have only x and y components.
Thus the mixed norm (9) achieves group sparsity in a sense,
where the groups are defined as {x, y} and {z}. In this regard,
if we want the groups to overlap, say, to allow the denoised
estimates to have either {x, y} or {x, z} components only, we
could utilize the norm in (10). This was the idea in [1]. The
unit ball for this norm is shown in Figure 2(c); its dual ball
is shown in Figure 2(g). This norm does achieve the desired
effect to some extent. We see that a number of solutions will be
sparse with only a y-component; a number of solutions will be
sparse with only a z-component; a number of solutions will be
almost group-sparse with either {x, y} or {x, z} components.

An interesting construction of norms that achieve the desired
effect above (exact group sparsity with either {x, z} or {y, z}
groups, for instance) was provided by Jacob et al. in [20].
Although the authors define the norms directly in [20], we
think that the dual-ball is easier to describe. Indeed, the
dual-ball in Figure 3(e) is the intersection of the cylinders
Sy := {(x, y, z) :

√
x2 + z2 ≤ 1} and Sz := {(x, y, z) :√

x2 + y2 ≤ 1}. Since Sy has boundary parallel to the y-
axis, a number of solutions will not have a y-component.
Similarly, since Sz has boundary parallel to the z-axis, a
number of solutions will not have a z-component. The norm
associated with this dual ball, that is σSy∩Sz (t), is the infimal
convolution of σSy

(t) and σSz
(t) (see [18] – also see [20] for

the equivalent expression in this context). For the particular
case we are discussing, the infimal convolution is given by,

σSy∩Sz (x, y, z) =

inf
α∈[0,1]

√
(αx)2 + y2 +

√(
(1− α)x

)2
+ z2 (12)

Although we will not discuss these norms in greater depth,
we note that Proposition 2 proves useful for this example too.
Indeed, even though we do not have a closed form expression

for σSy∩Sz
, we can minimize

J(t) =
1

2
‖u− t‖22 + σSy∩Sz

(t) (13)

if we can project u onto Sy∩Sz . Dykstra’s algorithm (see [9],
[16]), which computes the projection onto the intersection of
a number of convex sets, can be utilized for this purpose5.
We also invite the reader to compare Figure 2(d,h) with
Figure 3(b,f).

Finally, we show in Figure 3(c,d,g,h) the so-called hier-
archical norms that favor a certain subgroup within a given
group. Specifically, the norm defined by

√
x2 + y2 + z2+ |z|

(see Figure 3(c,g)) ensures that the z-coordinate assumes a
non-zero value only if the (x, y) coordinates are non-zero as
well. We refer to [34], [21] for more detailed discussions.
We note that these norms are instances of mixed norms
with overlapping groups. Therefore, one can make use of
Algorithms 2, 3 below, when they are utilized as prior terms.

III. RELATED PROBLEMS

In this section, we consider several variations of the problem
(2). Starting from ‘base operation(s)’, like projection(s) onto
some simple set(s), we derive algorithms that solve each
particular case. The discussions and formulations are generic;
specialization to the problems listed in the Introduction are
provided in Section IV.

A. Support Functions Under Linear Mappings

We first investigate the case for which the term σK(t) in
(2) is replaced by σK(A t), where A is a matrix. That is, we
are interested in minimizing,

J(t) =
1

2
‖y − t‖22 + σK(A t). (14)

We will assume that we know how to solve the problem when
A = I , i.e. we know how to project onto K. We first note
that,

Lemma 1. Let K be a closed, convex set, A be a matrix, and
AT K be the set {AT z : z ∈ K}. Then, σK(A t) = σAT K(t).

The lemma follows directly from the definition of a support
function. We can now write J(t) as,

J(t) =
1

2
‖y − t‖22 + σAT K(t). (15)

By Prop. 2, to obtain the minimizer, we need to compute
the projection of y onto AT K. Let us denote the projection
by p. Notice that p = AT z∗ where z∗ is a solution6 of the
minimization problem,

z∗ ∈ argmin
z∈K

‖y −AT z‖22︸ ︷︷ ︸
C(z)

. (16)

5This is not the only option. Thanks to the appearance of an ‘inf’ term
in the definition of the norm, the authors propose another method in [20].
In fact, Dykstra’s algorithm can be derived similarly, by considering the dual
problem [15].

6If A has a non-trivial null-space, the minimizer of (16) may not be unique.
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Fig. 2. Unit balls of (a) the `1 norm, (b)
√
x2 + y2 + |z|, (c)

√
x2/4 + y2 +

√
x2/4 + z2, (d) 1

2

(√
x2 + y2 +

√
x2 + z2 +

√
y2 + z2

)
. (e,f,g,h)

The dual balls of the norms in (a,b,c,d).

To come up with an algorithm, we make use of the
majorization-minimization procedure [12], [19]. We will con-
struct a sequence

{
z(m)

}
m∈Z that converges to a minimizer

z∗.
For this, let γ be a positive constant such that γ I − AAT

is a positive-definite matrix. Given z(m), our goal is to find
z(m+1) with

C(z(m+1)) ≤ C(z(m)). (17)

Now set

z(m+1) =

argmin
z∈K

C(z) +
(
z − z(m)

)T (
γ I −AAT

) (
z − z(m)

)︸ ︷︷ ︸
Cm(z)

(18)

Notice that,

(i) Cm(z) ≥ C(z), because of the positive definiteness of
γ I −AAT .

(ii) Cm
(
z(m)

)
= C

(
z(m)

)
.

These two conditions ensure that C(z(m+1)) ≤ C(z(m)), as
desired.

Expanding and arranging the terms in (18), we obtain,

z(m+1) = argmin
z∈K

∥∥∥(γ−1A(y −AT z(m)
)
+ z(m)

)
− z
∥∥∥2
2

= PK

(
γ−1A

(
y −AT z(m)

)
+ z(m)

)
.

In summary, an algorithm that computes the minimizer of
(14) is,

Algorithm 1. Let z be a point in K. Let γ be greater than the
largest eigenvalue of AAT /2. Let PK(·) denote the projection
operator onto K.

(I) Repeat until convergence :

Update z = PK

(
γ−1A

(
y −AT z

)
+ z

)
(II) Set t∗ = y −AT z.

Remark 1. Convergence of this algorithm is shown in Ap-
pendix B.

Remark 2. Although in the derivation of the algorithm, we
required that γ I−AAT be positive-definite, actually it suffices
that 2γ I−AAT be positive definite. The difference is that, if
γ I−AAT is positive-definite, then the algorithm monotonely
decreases the function C(·) in (16). When only 2γ I − AAT
is positive-definite, the algorithm produces a sequence zk that
approaches, with each iteration, to the set of minimizers Z∗ of
(16). These claims follow from the derivation of the algorithm
above and the proof in Appendix B.

The second problem of our list in Section I is a special case
of the discussed problem with K = λB∞ where B∞ is the
unit ball of the `∞ norm (see (37)).

B. Multiple Support Functions

In this section, we consider another variation of (2). For
this, let K1, K2, . . .Kk be closed, convex sets. We investigate
the minimization of

J(t) =
1

2
‖y− t‖22+σK1(t)+σK2(t)+ . . .+σKk

(t). (19)

In the following, we assume that we know how to project onto
Kj for j = 1, 2, . . . , k.



5

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The dual ball in (e) is defined as the intersection of the cylinders Sy := {(x, y, z) :
√
x2 + z2 ≤ 1}, Sz := {(x, y, z) :

√
x2 + y2 ≤ 1}. The dual

ball in (f) is defined as the intersection of the cylinders Sy , Sx above and Sz := {(x, y, z) :
√
x2 + y2 ≤ 1}. (a,b) are unit balls of the support function of

the sets in (e,f) respectively. (c) Unit ball of the norm
√
x2 + y2 + z2 + |z|, (d) unit ball of the norm

√
x2 + y2 + z2 +

√
x2 + z2 + |z|. (g,h) dual balls

of the norms in (c,d).

We start by noting that,

Lemma 2. σK1
(t) + σK2

(t) = σK1+K2
(t).

The lemma follows from the definition of a support function.
As a corollary we obtain,

Corollary 1. σK1(t) + σK2(t) + . . . + σKk
(t) =

σK1+K2+...+Kk
(t).

Using this corollary, we write (19) as,

t∗ = argmin
t

1

2
‖y − t‖22 + σK1+K2+...+Kk

(t). (20)

By Prop. 2, we can obtain t∗ if we can compute
PK1+K2+...+Kk

(y). Recall that,

PK1+K2+...+Kk
(y) = argmin

z∈K1+K2+...+Kk

‖y − z‖22. (21)

But any z ∈ K1+K2+ . . .+Kk is expressed as z = z1+z2+
. . .+ zk where zj ∈ Kj . Therefore the minimization problem
(21) can be written as,

min
z1∈K1,z2∈K2,...,zk∈Kk

∥∥y − (z1 + z2 + . . .+ zk)
∥∥2
2
. (22)

If (z∗1 , z
∗
2 , . . . , z

∗
k) is a collection of points that minimize the

function in (22), z∗ = z∗1+z
∗
2+. . .+z

∗
k minimizes (21). Notice

that a natural ‘coordinate-descent’ type algorithm (see e.g. [24]
for a general description of coordinate-descent algorithms) for
the constrained minimization problem can be constructed for
(22). This allows us to solve (19).

Algorithm 2. Select some z1 ∈ K1, z2 ∈ K2, . . . , zk ∈ Kk.
(I) Repeat until some convergence criterion is met,

For j = 1 to k,

Let z̃j =
∑
i 6=j

zi

Update zj := PKj (y − z̃j)

(II) Set t∗ = y −∑k
i=1 zi.

Remark 3. In the above algorithm,
∑
zi converges to

PK1+K2+...+Kk
(y).

Remark 4. Notice that the update zj := PKj
(y − z̃j) is

equivalent to

zj := y − z̃j − argmin
t

(
1

2

∥∥(y − z̃j)− t∥∥22 + σKj
(t)

)
.

C. Multiple Support Functions Under Linear Mappings

Consider the minimization of

J(t) =
1

2
‖y−t‖22+σK1(A t)+σK2(A t)+. . .+σKk

(A t).

(23)

We transform J(t) as,

J(t) =
1

2
‖y − t‖22 + σ(AT K1)(t) + . . .+ σ(AT Kk)(t)

=
1

2
‖y − t‖22 + σAT (K1+K2+...+Kk)(t).

Therefore, the minimizer of J(t) is equal to
y − PAT (K1+K2+...+Kk)(y). We remark that
PAT (K1+K2+...+Kk)(y) is given by, u∗ = AT z∗, where

z∗ ∈ argmin
z∈K1+K2+...+Kk

‖y −AT z‖22. (24)

Or, z∗ = z∗1 + z∗2 + . . .+ z∗k where z∗i ∈ Ki and

(z∗1 , z
∗
2 , . . . z

∗
k) ∈

argmin
z1∈K1,z2∈K2,...,zk∈Kk

∥∥y −AT (z1 + z2 + . . .+ zk
)∥∥2

2
.
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To realize an algorithm that computes z∗, we once again resort
to the majorization-minimization procedure and construct a
sequence

{
z(m)

}
m∈Z that converges to such a z∗.

Let now z
(m)
j ∈ Kj be given and set z(m) =

∑k
j=1 z

(m)
j .

Also let γ I −AAT be positive-definite. Define,

C(z) = ‖y −AT z‖22,
Cm(z) = C(z) +

(
z − z(k)

)T (
γ I −AAT

) (
z − z(k)

)
= γ

∥∥∥(γ−1AT (y −Az(m)
)
+ z(m)

)
− z
∥∥∥2
2
+ c

where c is independent of z. Since C(z(m)) = Cm(z(m))
and Cm(z) ≥ C(z), all we need to do is to find a point
z(m+1) ∈ ∑Ki with Cm(z(m+1)) ≤ Cm(z(m+1)). But this
is exactly the same problem discussed in Section III-B. For
instance, for d = γ−1AT

(
y −Az(m)

)
+ z(m), if we set,

• z(m+1)
1 = PK1

(
d−∑j>1 z

(m)
j

)
,

• z(m+1)
2 = PK2

(
d−∑j<2 z

(m+1)
j −∑j>2 z

(m)
j

)
,

• z(m+1)
3 = PK3

(
d−∑j<3 z

(m+1)
j −∑j>3 z

(m)
j

)
,

...
• z(m+1)

k = PKk

(
d−∑j<k z

(m+1)
j

)
,

then we obtain a set of vectors z(m+1)
j ∈ Kj such that, for

z(m+1) =
∑
z
(m+1)
j , we have Cm(z(m+1)) ≤ Cm(z(m+1)).

In summary, the following algorithm produces a minimizer
of (23).

Algorithm 3. Select some z1 ∈ K1, z2 ∈ K2, . . . , zk ∈ Kk.
Set z =

∑
j zj . Initialize, d, z̃1, . . . , z̃k.

(I) Repeat until some convergence criterion is met,
(i) Update d = γ−1A

(
y −AT z

)
+ z.

(ii) For j = 1 to k,

Update z̃j =
∑
i 6=j

zi (25)

Update zj = PKj (d− z̃j) (26)

(iii) Update z =
∑
j zj .

(II) Set t∗ = y −AT z.

D. Convex Combinations with an `2 term

Finally, we consider a special case of the problem discussed
in Section III-B. This time, the cost function is,

J(t) =
1

2
‖y − t‖22 + σK(t) + λ‖t‖2, (27)

where K is a closed, convex set.
We remark that Algorithm 2, discussed in Section III-B can

be adapted for the minimization of (27). But Algorithm 2
typically requires infinitely many iterations. The following
proposition shows that, if we know how to project onto K
(which we assume in Section III-B), we can actually reach
the minimizer in two steps.

Proposition 3. Let K be a convex set and B2 be the unit `2
ball, both in Rn. Let C = K + λB2. Also, let the projection
of a given y onto K be p. Then, the projection of y onto C is

d = p+ z where z is the projection of y− p onto λB2, which
is given by,

z = λ
y − p

max(λ, ‖y − p‖2)
. (28)

Proof: We note that the claim is trivially true if y ∈
K + λB2. In the following, we assume that y /∈ K + λB2.
Also, we will take λ = 1 for simplicity. In this case, we have,

z =
y − p
‖y − p‖2

and d = p+
y − p
‖y − p‖2

. (29)

We will show that 〈y − d, x− d〉 ≤ 0 for all x ∈ K +B2.
We first note that

〈y − p, u− p〉 ≤ 0 ∀u ∈ K. (30)

Now pick an arbitrary point x ∈ K +B2. By definition, there
exists a pair, u ∈ K, v ∈ B2 such that x = u + v (this pair
need not be unique though). Set α = 1−1/‖y−p‖2. We have,

〈y − d, x− d〉

=

〈
y − p− y − p

‖y − p‖2
, u− p+ v − y − p

‖y − p‖2

〉
= α〈y − p, u− p〉+ α〈y − p, v〉 − α

〈
y − p, y − p

‖y − p‖2

〉
≤ α〈y − p, u− p〉+ α‖y − p‖2 ‖v‖2 − α‖y − p‖2 (31)
≤ α〈y − p, u− p〉 (32)
≤ 0. (33)

Here, (31) follows by applying the Cauchy-Schwarz inequality
to the second term, (32) by noting that ‖v‖2 ≤ 1 and (33) is
just (30). Since x was an arbitrary point of K+B2, the claim
follows.

IV. APPLICATION TO DIFFERENT FORMULATIONS

We now specialize the algorithms discussed so far to the
problems listed in the Introduction.

Let us first recall some facts about `p norms. For t ∈ Rn,
the `p norm is defined as,

‖t‖p =
(

n∑
k=1

|ti|p
)1/p

for 1 ≤ p <∞, (34)

‖t‖∞ = max(t1, t2, . . . , tn). (35)

If we denote the unit ball of the `q norm by Bq , that is,

Bq = {z : ‖z‖q ≤ 1}, (36)

then it can be shown, by Hölder’s inequality, that, for 1/q +
1/p = 1,

‖t‖p = sup
z∈Bq

〈z, t〉. (37)

The ‘mixed norm’ (defined in Section IV-D) and the convex
combination of `1 and `2 norms used in the elastic net can also
be written as support functions of a set K. For mixed norms,
we will not specifically make use of the set K. For the convex
combination of `1 and `2 norms, we note that K is a sum of
the unit balls of `∞ and `2 norms. This can be used to gain
some geometric insight on the parameters of the elastic net.
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A. Analysis/Synthesis Prior Denoising For Orthonormal
Transforms

We would like to compute the minimizer of

J(t) =
1

2
‖y − t‖22 + λ ‖t‖1. (38)

Noting that λσK(t) = σλK(t) (follows from the definition),
we can rewrite this as,

J(t) =
1

2
‖y − t‖22 + σλB∞(t). (39)

Invoking Prop. 2 the minimizer, t∗, is,

t∗ = y − PλB∞(y). (40)

If we denote the projection of y to λB∞, as z, we have,

zi = sign(yi) max(|yi|, λ) for i = 1, 2, . . . , n. (41)

Therefore,

t∗i = yi−zi = sign(yi) max(|yi|−λ, 0) for i = 1, 2, . . . , n.

This is the well-known soft-thresholding function.
For later reference, we define the ‘clip’ function as,

clip(y, λ) := sign(y) max(|y|, λ). (42)

Thus, soft thresholding y with λ can be expressed as y −
clip(y, λ).

B. Analysis Prior Denoising
We would like to compute the minimizer of

J(t) =
1

2
‖y − t‖22 + λ ‖A t‖1, (43)

where A is some matrix. This is a particular case of the
minimization problem considered in (14), where K = λB∞.

Recalling that PλB∞ = clip(y, λ). Algorithm 1 can be
adapted for minimizing J(t) in (43) as,

Algorithm 4. Let z be a point in λB∞. Let γ be greater than
the largest eigenvalue of AAT /2.

(I) Repeat until some convergence criterion is met :

Update z = clip

(
γ−1AT

(
y −Az

)
+ z, λ

)
(II) Set t∗ = y −AT z.

C. Orthonormal Ridge Regression
Before delving into mixed norms, we study the problem

t∗ = argmin
t

1

2
‖y − t‖22 + λ ‖t‖2 (44)

The solution of this problem will be useful when we consider
mixed norms. This problem is also referred to as ridge
regression (for an orthogonal design) [17].

Since ‖t‖2 = supz∈B2
〈z, t〉 (recall (37)), by Prop. 2, we

see that,

t∗ = y − PλB2
(y). (45)

The projection of y onto λB2 is simply λ y/max
(
‖y‖2, λ

)
.

Therefore,

t∗ = y − y

max
(
‖y‖2/λ, 1

) . (46)

In the following, we will make use of this result.

t1 t2 t6

Group 1 Group 2 Group 3

t3 t4 t5

(a)

(b)

Fig. 4. Mixed (`2,1) norms are defined as the sum of the `2 norms of the
groups. The mixed norm associated with the grouping system in (a) is given
in (47), wheras the mixed norm associated with the grouping system in (b)
is given in (48).

D. Mixed Norms

Briefly, the mixed `2,1 norm of a vector is defined to be
the sum of the `1 norms of groups of coefficients. More
concretely, for the vector t = (t1, t2, . . . , t6) suppose we first
form three groups, g1 = (t1, t2), g2 = (t3, t4), g3 = (t5, t6)
(see Figure 4a). Given this grouping, the mixed `2,1 norm is
defined as,

‖t‖2,1 =

3∑
k=1

‖gk‖2 =
√
t21 + t22 +

√
t23 + t24 +

√
t25 + t26.

(47)

Notice that in this case, the groups do not overlap. That is, a
particular coefficient tj appears only in a single group. There
is no such restriction in general. A grouping system with
overlapping groups is shown in Figure 4b. For the grouping
system in Figure 4b, the mixed norm becomes,

‖t‖2,1 =
√
t21 + t22 +

√
t22 + t23

+
√
t23 + t24 +

√
t24 + t25 +

√
t25 + t26. (48)

In general, given a vector t = (t1, t2, . . . , tn), we first form
a number of groups,

g1 = (g1,1, g1,2, . . . , g1,j1)

g2 = (g2,1, g2,2, . . . , g2,j2)

...
gk = (gk,1, gk,2, . . . , g2,jk)

where gi,j = tk for some k. Based on these groups, the `p,q
norm of t is,

‖t‖p,q =
(

k∑
i=1

‖gi‖qp

)1/q

. (49)

In this paper, we will take p = 2, q = 1. For a discussion of
the more general case, we refer to [23]. For p = 2, q = 1, the
expression becomes

‖t‖2,1 =

k∑
i=1

‖gi‖2. (50)
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We note that the groups are allowed to share coefficients.
When this is the case, we refer to the mixed norm as a ‘mixed
norm with overlapping groups’. Otherwise, we will call it
a ‘mixed norm with non-overlapping groups’. The latter, as
we will see, is easier to handle for our particular problem
formulation. However, allowing the groups to overlap leads to
better performance [1].

1) Non-Overlapping Groups: As a concrete example, con-
sider the norm (47). The functional of interest in this case
is,

C(t) =
1

2
‖y−t‖22+λ

(√
t21 + t22 +

√
t23 + t24 +

√
t25 + t26

)
.

C(t) is separable with respect to the groups. That is, for

C1(t1, t2) =
1

2

2∑
i=1

‖yi − ti‖22 + λ
√
t21 + t22,

C2(t3, t4) =
1

2

4∑
i=3

‖yi − ti‖22 + λ
√
t23 + t24,

C3(t5, t6) =
1

2

6∑
i=5

‖yi − ti‖22 + λ
√
t25 + t26,

we see that C(t) = C1(t1, t2) + C2(t3, t4) + C3(t5, t6).
Minimization of Ci can be performed separately to obtain the
minimizer of C(t). We remark that Section IV-C provides the
solution for minimizing Ci(·, ·).

2) Overlapping Groups: For mixed norms with overlap-
ping groups, the algorithm outlined above cannot be applied
because in this case the cost function is not separable with
respect to the groups. Once again, we outline an algorithm
for a concrete example. Consider the mixed norm ‖t‖2,1 in
(48). Notice that we can write this norm as the sum of two
components with non-overlapping groups,

‖t‖2,1 =
√
t21 + t22 +

√
t23 + t24 +

√
t25 + t26︸ ︷︷ ︸

‖t‖a

+
√
t22 + t23 +

√
t24 + t25︸ ︷︷ ︸

‖t‖b

. (51)

Notice that ‖t‖a and ‖t‖b come from the groups formed
by the black and red blocks respectively in Figure 4b. Our
minimization problem is,

min
t

1

2
‖y − t‖22 + λ ‖t‖a + λ ‖t‖b (52)

We are in the application domain of Algorithm 2 because we
know how to solve each of,

min
t

1

2
‖y − t‖22 + λ ‖t‖a, (53)

min
t

1

2
‖y − t‖22 + λ ‖t‖b, (54)

from our analysis in the previous section. We remark that
solving (53) and (54) is essentially equivalent to projecting
y onto the sets A and B, where A and B are such that
‖ · ‖a = σA(·), ‖ · ‖b = σB(·).

Translating Algorithm 2 for (52), we therefore see that the
following routine yields a minimizer of (52) :

(I) Repeat until some convergence criterion is met :
Update

ta = y−tb−
{
argmin

t

(
1

2

∥∥(y − tb)− t∥∥22 + λ ‖t‖a
)}

Update

tb = y−ta−
{
argmin

t

(
1

2

∥∥(y − ta)− t∥∥22 + λ ‖t‖b
)}

(II) Set t∗ = y − (ta + tb).
We remark that we can always express a mixed norm

with overlapping groups, ‖t‖2,1, as the sum of mixed norms
with non-overlapping groups, possibly using more than two
grouping systems. In particular, suppose we have that ‖t‖2,1 =
‖t‖a1 + ‖t‖a2 + . . . + ‖t‖ak and we know how to minimize
each of

Ji(k) =
1

2
‖y − t‖22 + λ ‖t‖ai . (55)

Then, to compute

argmin
t

1

2
‖y − t‖22 + λ ‖t‖2,1. (56)

the following algorithm can be used.

Algorithm 5. Initialize z1, z2, . . . zk such that zi ∈ Ki.
(I) Repeat until some convergence criterion is met,

For j = 1 to k,

Update z̃j =

∑
i6=j

zi


Update zj = PKj (y − z̃j)

= y−z̃j−
{
argmin

t

(
1

2

∥∥(y − z̃j)− t∥∥22 + σKj (t)

)}
(II) Set t∗ = y −∑k

i=1 zi.

Remark 5. This is an adaptation of Algorithm 2.

Mixed Norms Under Linear Mappings: Suppose ‖ · ‖ is a
mixed norm with overlapping groups and that we can write it
as,

‖ · ‖ = ‖ · ‖a1 + ‖ · ‖a2 + . . .+ ‖ · ‖an , (57)

where for each ‖ · ‖ai , we know how to minimize,

Ji(t) =
1

2
‖y − t‖22 + λ ‖t‖ai . (58)

To minimize

J(t) =
1

2
‖y − t‖22 + λ ‖A t‖, (59)

the following algorithm, which is an adaptation of Algorithm 4
can be used.

Algorithm 6. Initialize z1, z2, . . . , zn such that zi is an
element of the support set for ‖ · ‖ai . Set z = z1 + . . . + zn.
Choose γ, greater than the largest eigenvalue of AAT /2.
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(I) Repeat until some convergence criterion is met,
(i) Update d = γ−1A (y −AT z) + z

(ii) For j = 1 to n,

Update z̃j =
∑
i 6=j

zi

Update u = argmin
t

1

2
‖d− z̃j − t‖22 + λ ‖t‖aj

Update zj = d− z̃j − u

(iii) Update z =
∑
j zj .

(II) Set t∗ = y −AT z.

See experiment 1 in Section V for a comparison of different
uses of this algorithm.

E. Total Variation Denoising

Let t be an N × N image whose (i, j)th pixel is denoted
by ti,j . In this setting, the total variation (TV) of t is,

TV(t) =

N∑
i,j=1

∥∥∥∥((Dx t
)
i,j
,
(
Dy t

)
i,j

)∥∥∥∥
2

(60)

where Dx and Dy are finite difference operators, which can
be realized by LTI filtering t with [1 − 1] in the horizontal
and vertical directions respectively.

We recognize TV(t) as a mixed norm, with non-overlapping
groups under the linear mapping
A =

[
Dx Dy

]T
.

Remark 6. The spectral radius of AAT satisfies
ρ(AAT ) ≤ 8.

In this setting, an algorithm for minimizing

J(t) =
1

2
‖y − t‖22 + λTV(t) (61)

can be given as,

Algorithm 7. Set γ > 4 (assuming that Dx and Dy are
realized as described above). Initialize zx, zy by setting to
zero.

(I) Repeat until some convergence criterion is met,
(i) Update d = y −DT

x zx −DT
y zy

(ii) Update dx = γ−1Dx d+ zx
(iii) Update dy = γ−1Dy d+ zy
(iv) For i, j = 1 to N , update

c = max
(√

(dx)2i,j + (dy)2i,j , λ
)

(zx)i,j = λ (dx)i,j/c

(zy)i,j = λ (dy)i,j/c

(II) Set t∗ = y −DT
x zx −DT

y zy .

This algorithm can also be found in [6], [3]. An interesting
observation pertaining to this algorithm is that, although the
iterates work on the dual formulation, the associated primal
variables seem to monotonely decrease the cost function in
(61). This is discussed in Experiment 2.

y

c+ z

c

Fig. 5. Projecting y onto B = αB∞ + (1 − α)B2 can be performed in
two steps. First, project y onto αB∞ to obtain c. Then, project y − c onto
(1− α)B2 to obtain z. c+ z gives the desired projection.

α

1− α

1

(a) (b)

Fig. 6. The dual balls of (a) the elastic net, (b) the `1 norm. If y is in the
gray regions, the solution will be ‘sparse’.

F. Elastic Net 7

Consider the minimization problem

min
t

1

2
‖y − t‖22 + λ

(
α ‖t‖1 + (1− α) ‖t‖2

)
. (62)

To find the solution, we need to project onto B = λ
(
αB∞+

(1 − α)B2

)
. Thanks to Proposition 3, this can be achieved

with two projections :
(I) Set c := PλαB1(y) = clip(y, λα).

(II) Set z := Pλ (1−α)B2
(y − c) = λ (1 −

α) y−c
max(‖y−c‖2,λ (1−α)) .

(III) Set t∗ = y − c− z.
The procedure is demonstrated in Figure 5.

To understand the difference with `1-regularization, we can
compare the dual-ball B with the dual ball of the `1 norm,
namely B∞ (see Figure 6). Like B∞, B leads to sparse
solutions provided the observations fall in the shaded region.
However, this ‘sparse region’ is smaller than that of B∞.
Consequently, elastic net solutions are typically not as sparse
as `1 regularized solutions. On the other hand, when the
observations fall in the remaining white regions, the elastic
net solutions preserve the direction of the observation vector
better. This in turn means that, compared to `1 regularization,
the elastic net provides solutions that are more faithful to the
correlations among the coefficients. In short, we can say that
the elastic net allows a trade-off between sparsity and the
preservation of the correlations. We refer to Experiment 3 for
a further discussion.

7The discussion included in this subsection is partially adapted from [2].
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V. EXPERIMENTS AND DISCUSSION

In this section, we consider some experiments to evaluate
and discuss the presented algorithms8.

Experiment 1. We consider a signal that consists of three
clicks, whose Short-Time Fourier Transform coefficients are
shown in Figure 7(a). We add Gaussian noise to this signal
to obtain the ‘noisy observation’, y (rms = 2.86) whose STFT
coefficients are shown in Figure 7(b). We try three different
denoising methods. First, we simply apply a soft threshold to
the STFT coefficients where the threshold is selected so as to
yield the best output rms (Figure 7(c). The other two minimize
a functional of the form

J(t) =
1

2
‖y − t‖22 + λ‖A t‖2,1, (63)

using Algorithm 6. These two methods differ in the way the
groups are formed. In Figure 7(d) the output when the groups
are formed along the time-axis (G1 in Figure 8) are shown.
Figure 7(e) shows the output when the groups are formed
along the frequency-axis (G2 in Figure 8). We note that both
visually, in terms of rms and perceptually, this last scheme
outperforms the others. An interesting thing to note is that,
despite the higher rms value, mixed norms of Figure 7(d) do
not suffer from musical noise which is clearly heard in soft-
thresholding.

Experiment 2. We apply Algorithm 7 (TV denoising) to the
noisy image in Figure 9a. In 100 iterations, we reach the
‘approximately denoised’ image in Figure 9b. Logarithm of the
primal cost function J(t) evaluated at the iterates are shown
in Figure 9c for γ = 4 and γ = 8. For γ = 8, we see that
the primal cost function is decreasing with iterations. We note
that the descent in the primal cost function is not an obvious
consequence of the derivation of the algorithm because the
development of the algorithm is based on the dual problem. We
do not have a proof for this interesting behavior, but we would
like to note that if it is true in general, one could modify the
readily used algorithms for linear inverse problems with TV
regularizers. Especially, ‘iterated soft-thresholding algorithms’
employ iterations that consist of a Landweber step (which can
be performed easily) followed by a TV denoising step (see
e.g. [3]). Even though the exact TV denoising step requires
infinitely many iterations, one can stop as soon as a descent
in the cost function is achieved, but the number of iterations
required to reach a descent in the cost function are usually
not known beforehand. Therefore it would be of interest to
show that, for certain choiced of γ, the algorithm monotonely
decreases the primal cost function.

As a final note on the choice of γ, we show in Figure 9d the
distance from the limit as the as a function of iterations, for
γ = 4 and γ = 8. In order to compute this limit numerically,
we first obtained an approximate limit image by running the
algorithm with γ = 8 for 5000 iterations. We see that the
choice γ = 4, although not monotonely decreasing the primal
cost function, leads to faster convergence to the limit image.

8Matlab Codes of these experiments are available at
http://web.itu.edu.tr/ibayram/Temp/DenoiseSupport.zip
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Fig. 7. Time-frequency maps (spectrogram magnitudes) for a denoising
experiment. The same nonlinear function is applied to the spectrograms above
to enhance visibility. (a) Clean signal, (b) Noisy observation (rms = 2.86),
(c) Soft threshold output (rms = 0.82), (d) Mixed norm denoising, groups
formed along ridges parallel to the time-axis (rms = 1.00), (e) Mixed norm
denoising, groups formed along ridges parallel to the frequency-axis (rms =
0.75). Despite the higher ‘rms’ value, the output in (d) sounds perceptually
better than (c), which suffers from musical noise. The output in (e) performs
better than the other two methods, both perceptually and in terms of ‘rms’.
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G2

G1

Fig. 8. To define the mixed norms used in Example 1, two different
grouping systems on the STFT coefficients are used. The first one, G1, groups
coefficients along the time-axis (groups consist of all the shifts of G1). The
second one, G2, groups coefficients along the frequency-axis (groups consist
of all the shifts ofG1). Although in this figure the groups host two coefficients,
in practice we used groups hosting 15 coefficients.
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Fig. 9. (a) Noisy observation, (b) Result of applying Algorithm 7 to the noisy
observation with 500 iterations, (c) Evolution of the primal cost function in
(61) for γ = 4 and γ = 8, (d) log-Distance from the limit TV denoised
image for γ = 4 and γ = 8.

Experiment 3. In this experiment, we aim to demonstrate the
freedom that the elastic net brings by providing a trade-off be-
tween sparsity and the correlation structure of the coefficients.
We take the clean signal shown on the top panel of Figure 10.
Observe that some coefficients form non-zero clusters, but
otherwise the signal can be considered sparse. We add noise
to this signal and then denoise using `1 regularization and
the elastic net. For denoising, we chose a single λ that gives
the same output SNR for both methods. The squared error
signal for the two cases are shown on the bottom panel of
Figure 10. For `1 (the thick black line), the error signal is
unevenly distributed, taking higher values where the original
signal is locally non-sparse. The elastic net solution distributes
the error more evenly (the thin red line).

A point we find interesting, and perhaps also a bit dis-
appointing, is that, on this example (and a number of other
examples), the elastic net did not lead to an overall increase
in performance. We think that in order to achieve better
performance, one needs to form more complicated structures
like those of mixed norms with appropriate group structures.

VI. CONCLUSION

In this paper, we studied the problem

min
t

1

2
‖y − t‖22 + sup

z∈K
(t). (64)

Clean Signal Used in Experiment 3

Squared Error for `1 and Elastic Net Regularization

 

 

`1
Elastic Net

Fig. 10. A denoising experiment comparing the elastic net and `1 regular-
ization. On the top panel, the underlying clean signal is shown. This signal is
‘group-sparse’. The bottom panel shows the squared error signals (smoothed
for better visualization) for `1 regularization (the thick black line) and the
elastic net (the thin red line). Noting that the total error for both are the same
(assured by selecting λ accordingly), we observe that the error is more evenly
distributed for the elastic net.

For proper choices of the set K, we have seen that one
can recover a number of popular formulations as listed in
the Introduction. We aimed to develop further insight about
the problem by exploiting the close relation between the
solution of (64) and the projection of y onto K. We think that
recognition of a certain denoising problem as (64), however
exotic the associated K may be, could lead to new/useful
algorithms since projections in different scenarios are well-
studied in convex analysis.

Regarding the solution of the problem (64) as essentially
equivalent to a projection to the dual-ball (that is, K), one is
naturally led to the design of norms by explicit constructions
of K. This is demonstrated in Section II for a simple case
(following [20]). This approach to the design of norms,
could also help improve signal models, without sacrificing the
simplicity of the resulting model.

APPENDIX A
PROOF OF PROPOSITION 2

Compact proofs for Proposition 2 making use of convex
analysis tools can be found in [5], [3]. Here we provide a
simple proof from scratch, following the idea in [3].

We will see that there is a very natural dual problem [26]
associated with (2). In the following, we essentially derive the
solution for the dual problem and show that it leads to the
solution of the primal problem as well.

Define,

J(t, z) =
1

2
‖y − t‖22 + 〈z, t〉. (65)

The problem (2) can now be expressed as,

min
t

max
z∈K

J(t, z). (66)
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Let us denote J∗ := mint maxz∈K J(t, z). If we can find a
pair (t∗, z∗) such that

(i) argmaxz∈K〈t∗, z〉 = z∗,
(ii) J∗ ≥ J(t∗, z∗),

then t∗ is the minimizer we seek in (2).
Since, J(t, z) ≤ maxu∈K J(t, u) for all z ∈ K and t, we

have,

min
t
J(t, z) ≤ min

t
max
u∈K

J(t, u) = J∗ for all z ∈ K.

This yields,

J∗ ≥ max
z∈K

min
t
J(t, z). (67)

Now let us look at the right hand side of (67). Notice that the
unique solution of mint J(t, z) is,

argmin
t

J(t, z) = argmin
t

1

2
‖y − t‖22 + 〈z, t〉 = y − z.

Inserting this into the rhs of (67), we have,

max
z∈K

min
t
J(t, z) = max

z∈K
1

2
‖z‖22 + 〈z, y − z〉 (68)

= max
z∈K
−1

2
‖z‖22 + 〈z, y〉 (69)

= max
z∈K
−1

2
‖y − z‖22 +

1

2
‖y‖22. (70)

We finally note that,

argmax
z∈K

−1

2
‖y − z‖22 +

1

2
‖y‖22 = argmin

z∈K
‖y − z‖22 (71)

= PK(y), (72)

where PK(y) denotes the projection (the closest point) of the
set K to y. Because K is closed, such a point exists in K.
Thanks to convexity, it is unique.

Let us check whether the pair (t∗, z∗) =
(
y −

PK(y), PK(y)
)

satisfies the conditions (i), (ii) above. For (i),
we first recall that the projection of y onto K is the unique
point p that satisfies (see e.g. [18]),

〈y − p, z − p〉 ≤ 0 for all z ∈ K. (73)

Using this, (i) is seen to be true since

argmax
z∈K

〈t∗, z〉 = argmax
z∈K

〈y − PK(y), z〉 (74)

= argmax
z∈K

〈y − PK(y), z − PK(y)〉 (75)

= PK(y). (76)

Also, (ii) follows automatically from (67). Thus follows the
claim.

APPENDIX B
CONVERGENCE OF ALGORITHM 1

The algorithm is actually an instance of a forward-backward
splitting algorithm. Therefore, its convergence is a conse-
quence of the results of Combettes and Wajs [7]. We note
that the treatment in [7] is valid for a more general setting.
Here, we provide a convergence proof from scratch using less
sophisticated machinery.

For convenience of notation, let us denote the two steps of
Algorithm 1 by a function Mc(·) :

Mγ(z) = PK
{
γ−1A

(
y −AT z

)
+ z
}
. (77)

With this definition, we can express the algorithm as zm+1 =
Mγ(z

m). Since the cost function C(z) (see (16)) is convex
and bounded from below, there exists at least one minimizer
(but it need not be unique). We denote the (non-empty) set
of minimizers as Z∗. Let us start by showing that the fixed
points of this operator coincide with the set of minimizers.

Lemma 3. Suppose that γ I − AAT > 0. Then, Mc(z) = z
if and only if z ∈ Z∗.

Proof: Let z∗ ∈ Z∗. This means that C(z∗) ≤ C(z) for
all feasible z (i.e. for all z ∈ K). Consider D(z) = C(z) +(
z−z∗

)T (
γ I−AAT

) (
z−z∗

)
(compare with (18)). We want

to show that

Mγ(z
∗) := argmin

z∈K
D(z) = z∗. (78)

Suppose this is not true. This is only possible if D(z) ≤ D(z∗)
for some feasible z∗. This in turn means that

C(z)− C(z∗)︸ ︷︷ ︸
t1

+(z − z∗)T (γ I −AAT ) {(z − z∗)}︸ ︷︷ ︸
t2

≤ 0.

Since t1 is non-negative and t2 is positive, this cannot be true.
Therefore Mγ(z

∗) = z∗.
Now suppose z∗ /∈ Z∗ for a feasible z∗. We can find a

feasible z s.t. C(z) < C(z∗). Let zu = u z + (1 − u) z∗ and
consider the (feasible) segment {zu : u ∈ [0, 1]}. On this
segment, we will show that there exists u > 0 s.t. D(zu) <
D(z∗) and therefore that Mγ(z

∗) 6= z∗. Consider the affine
function f(u) = uC(z∗)+(1−u)C(z). By convexity of C(·),
we have C(zu) ≤ f(u) with f(0) = C(z∗). Also let, g(u) =(
zu − z∗

)T (
γ I −AAT

) (
zu − z∗

)
. Notice that g(u) = d u2

for some d > 0. Thus, for a fixed arbitrary a > 0, there exists
u ∈ (0, 1] s.t. g(u) < au. This implies that f(u) + g(u) <
f(0) + g(0) for some u ∈ (0, 1]. Hence

D(zu) ≤ f(u) + g(u) < f(0) + g(0) = D(z∗), (79)

which is the contradiction we set out to reach.

This is a characterization of the fixed points of Mγ(·)
for a restricted set of γ values. In fact, we can remove this
restriction. We first show that the fixed point set of Mγ(·) is
not dependent on γ.

Lemma 4. Mγ(z
∗) = z∗ if and only if Mγ′(z∗) = z∗ for

any γ′ > 0.
Proof: Suppose that Mγ(z

∗) = z∗. That is,

z∗ = PK
(
γ−1A

(
y −AT z∗

)
+ z∗

)
. (80)

This is equivalent to,

〈γ−1A
(
y −AT z∗

)
, z − z∗〉 ≤ 0 ∀z ∈ K. (81)

Notice that we can replace γ with any positive γ′ without
changing the equality. Therefore Mγ′(z∗) = z∗. Repeating
the same argument by changing the roles of γ and γ′, the
claim of the lemma follows.
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Combining the two lemmas, we have

Corollary 2. Mγ(z) = z if and only if z ∈ Z∗, for any
γ > 0.

Let us now turn to the convergence issue. In the following,
ρ(A) denotes the spectral radius of the matrix A. We first recall
a well-known result from convex analysis (see e.g. [18]).

Lemma 5. Let K be a closed convex set and PK(·) be the
projection operator to K. Then PK(·) is a non-expansive
mapping, i.e.,

‖PK(x)− PK(y)‖2 ≤ ‖x− y‖2. (82)

Thanks to this lemma, we have,

‖Mγ(z)−Mγ(z̃)‖2 ≤ ‖(I − γ−1AAT )(z − z̃)‖2. (83)

for any z, z̃. Therefore if ρ(I − γ−1AAT ) ≤ 1, Mγ(·) is a
nonexpansive mapping. Now for a given z0, suppose we define
zi+1 =Mγ(z

i). In particular, since we know from Corollary
2 that z∗ ∈ Z∗ is a fixed point of this operator, we get

‖Mγ(z
i)− z∗‖2 = ‖zi+1 − z∗‖2 ≤ ‖zi − z∗‖2. (84)

In words, we can only get closer to a minimizer as the itera-
tions progress. Another consequence of (84) is that for given
z0, the set consisting of iterates of the algorithm {zi}i∈N is
bounded. Since zi ∈ Rn, we can therefore extract a convergent
subsequence by the Bolzano-Weierstrass theorem (see [28],
Thm. 2.42). Suppose {zik}k∈N is one such subsequence and
that zik → z∞. If we can show that this z∞ is a fixed point
of the operator, then, by (84), we would have that ‖zi−z∗‖ is
monotone decreasing and convergent to 0, i.e. the algorithm
in fact converges to a minimizer. The critical point is then to
show that z∞ ∈ Z∗.
Lemma 6. Suppose that 2γI − AAT > 0. For an arbitrary
fixed z0, define zi+1 = Mγ(z

i). Then, the cluster points of
the sequence {zi}i∈N are in Z∗.

Proof: We first remark that if 2γI − AAT > 0, then
σ := ρ(I − γ−1AAT ) < 1 on the range space of A. We also
note that if z̃ and ẑ are in Z∗, then AT z̃ = AT ẑ.

Now let z∞ be a cluster point of {zi}i∈N. From this se-
quence, extract a convergent subsequence zik → z∞. Suppose
z∞ /∈ Z∗. This will lead to a contradiction.

Since z∞ /∈ Z∗, we can find z∗ ∈ Z∗ with ‖z∞ − z∗‖ =
d > 0. Let us denote the projector to the range space of A
as P and denote P⊥ := I − P . Then, since AT z∗ 6= AT z∞,
(otherwise z∞ would be a minimizer), we have

‖P (z∗ − z∞)‖ := d1 > 0, (85)

‖P⊥(z∗ − z∞)‖ := d2 ≥ 0 (86)

and d2 = d21 + d22. Now for any given ε > 0 we can find an
integer K(ε) such that if k ≥ K(ε), we have ‖P (zik−z∞)‖ <
ε, ‖P⊥(zik − z∞)‖ < ε. Notice that in this case,

‖P (zik − z∗)‖ < d1 + ε, (87)

‖P⊥(zik − z∗)‖ < d2 + ε. (88)

Since Mγ(z
∗) = z∗ and PK(·) is nonexpansive, using the

definition of Mγ(·), we have

‖Mγ(z
ik)− z∗‖2 = ‖Mγ(z

ik)−Mγ(z
∗)‖22

≤ ‖(I − γ−1AAT )
{
(zik − z∗)

}
‖22

= ‖P (I − γ−1AAT )
{
(zik − z∗)

}
‖2

+ ‖P⊥(I − γ−1AAT )
{
(zik − z∗)

}
‖2

= ‖(I − γ−1AAT )P
{
(zik − z∗)

}
‖2

+ ‖(I − γ−1AAT )P⊥
{
(zik − z∗)

}
‖2

≤ σ2 (d1 + ε)2 + (d2 + ε)2.

Now if,

σ2 (d1 + ε)2 + (d2 + ε)2 ≤ d21 + d22, (89)

then we would have ‖zik+1 − z∗‖ ≤ ‖z∞ − z∗‖ and since
‖zik+r−z∗‖ ≤ ‖zik+1−z∗‖ for any positive integer r, it would
follow that zik 9 z∞, a contradiction that would conclude
the proof.

Let us see if we can make (89) true by selecting ε small
enough. Notice that (89) is equivalent to,

σ2 ≤ d21 + d22 − (d2 + ε)2

(d1 + ε)2
=

1− ε(2d2 + ε)/d21
1 + ε(2 + ε)/d21

. (90)

But the term on the rhs goes to 1 as ε goes to 0 and therefore
we can find some ε such that (89) holds, and the proof follows.

By the discussion preceding Lemma 6, we have

Proposition 4. If 2γI−AAT > 0, then Algorithm 1 converges
to a minimizer.
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