
The Expectation Maximization Algorithm

İlker Bayram

October 26, 2016

EM is an iterative procedure for obtaining maximum likeliood (ML) estimates. Suppose that X
is distributed according to the pdf fX(·; θ), where θ is an unknown parameter of interest. Suppose
also that we have n independent samples from fX as, x = (x1, . . . , xn). Given x, recall that the
ML estimate is the maximizer of the likelihood function L(·) = fX(x; ·), and is given by,

θ̂ = arg max
t

{
L(t) = fX(x; t) :=

n∏
i=1

fX(xi; t)

}
.

When L(t) has a simple expression, the ML estimate can be obtained analytically. However, in
many scenarios of interest, this is not the case. EM is an iterative procedure for finding a local
maximum of L(·).

Example : Suppose Z is a Bernoulli random variable with PMF

PZ(z) =

{
α0, if z = 1,

α1 = 1− α0, if z = 0,

where α0 is an (unknown) constant. Given a realization of Z as z, suppose X is given as,

X =

{
w + θ0, if z = 0,

w + θ1, if z = 1,

where w ∼ N (0, 1) and θi are unknown. Note that the distribution of X is

fX(x) = α0 g(x; θ0) + α1 g(x; θ1),

where

g(x; θ) =
1√
2π

exp

(
−1

2
(x− θ)2

)
.

Suppose we are given independent realizations of X and asked to estimate αi and θi. Notice
that here, zi’s are unknown to us (constituting the hidden states, according to hidden Markov
models terminology). Let us produce such a set of xi’s. In order to hide αi’s and θi’s, we also select
them randomly.

In [1]: import numpy

n = 1000 #number of samples

alp0 = numpy.random.uniform(0,1,1)

1

alp1 = 1 - alp0

theta = numpy.random.normal(0,5,2)

z = numpy.double(numpy.random.uniform(0,1,n) > alp0)

x = z * numpy.random.normal(theta[0],1,n)

+ (1-z) * numpy.random.normal(theta[1],1,n)

In the following, we pretend that we just observe x. Let us view the histogram of the data.

In [2]: import matplotlib.pyplot as plt

plt.hist(x,100)

plt.title("Histogram of the Observed Data")

plt.show()

Unless the θ values are very close or one of α is close to unity, we should see two modes, possibly
with different weights.

We will see in the following that if we knew zi’s, maximizing the likelihood function wrt αi and
θi is much easier. The idea in EM, to be detailed below, is to estimate, in an iterative manner, zi’s
as well as the unknown parameters αi, θi.

Let us now consider the hypothetical case where both xi’s and zi’s are known. Given zi’s let I0
and I1 denote the set of indices such that

zi =

{
0, if i ∈ I0,
1, if i ∈ I1.

Note that I0 ∪ I1 = {1, 2, . . . , n}. The likelihood function in this case is denoted as L̃(α, θ), and is

2

given as,

L̃(a, t) = a
|I0|
0 a

|I1|
1

1

(2π)n/2
exp

−1

2

∑
i∈I0

(xi − t0)2 +
∑
i∈I1

(xi − t1)2
 ,

where |Ii| denotes the number of elements in Ii. Note that |I1| = n − |I0|. Using this as well as
α1 = 1− α0, we can write the log-likelihood function as,

ln L̃(a, t) = |I0| ln(a0) + (n− |I0|) ln(1− a0)−
1

2

∑
i∈I0

(xi − t0)2 −
1

2

∑
i∈I1

(xi − t1)2.

Setting the gradient of this function to zero, we obtain the following set of equations

|I0|
α̂0
− n− |I0|

1− α̂0
= 0,∑

i∈I0

(θ̂0 − xi) = 0,

∑
i∈I1

(θ̂1 − xi) = 0.

Solving for the unknowns, we obtain the maximizers

α̂0 =
|I0|
n
,

θ̂0 =
1

|I0|
∑
i∈I0

xi,

θ̂1 =
1

n− |I0|
∑
i∈I1

xi.

However, when knowledge about z is missing, the ML estimates of αi and θi are not easy to
obtain. The idea in EM is to estimate the the log likelihood with the full data (including z) using
the current estimates of αi, θi, and then use this estimated log-likelihood function to re-estimate
(or, update the estimates of) αi and θi. More precisely, suppose we have the observations xi and
our current estimates of the unknown parameters are âi, t̂i. Then, instead of ln L̃(a, t), consider
the function

Q(a, t; â, t̂) = Eâ,t̂

(
ln L̃(a, t)

)
=
∑
z

ln L̃(a, t)PZ|X(z|x; â, t̂)

Notice that, here the expectation is computed using the PMF of z given x by taking the
parameters α and θ as â and t̂. Observe also that this gives a function Q(a, t; â, t̂) that depends
only on ai and ti. We maximize this function of a and t to update the desired parameters. That is
our new estimates of α and θ are given as,

(â, t̂) := arg max
a,t

Q(a, t; â, t̂).

3

Then we repeat the procedure over to further refine our estimates and continue ad infinitum. This
is the expectation maximization algorithm.

For our problem, we can express Q(a, t; â, t̂) as follows.

Q(a, t; â, t̂) =
∑
z

ln L̃(a, t)PZ|X(z|x; â, t̂)

=
∑
z

(
|I0| ln(a0) + (n− |I0|) ln(1− a0)

−1

2

∑
i∈I0

(xi − t0)2 −
1

2

∑
i∈I1

(xi − t1)2
)
PZ|X(z|x; â, t̂)

Observe also that, taking into account the fact that zi can only take values from {0, 1}, we can
write the term inside the parentheses as,(

n−
∑
i

zi

)
ln(a0) +

(∑
i

zi

)
ln(1− a0)−

1

2

∑
i

(1− zi) (xi − t0)2 −
1

2

∑
i

zi (xi − t1)2

Therefore, if we set ei = Eâ,t̂(zi|xi), then we can express Q(a, t; â, t̂), as

Q(a, t; â, t̂) =

(
n−

∑
i

ei

)
ln(a0)+

(∑
i

ei

)
ln(1−a0)−

1

2

∑
i

(1−ei) (xi−t0)2−
1

2

∑
i

ei (xi−t1)2.

I leave it to you to verify that

Eâ,t̂(zi|xi) =
(1− â0) g(xi; t̂1)

â0 g(xi; t̂0) + (1− â0) g(xi; t̂1)

Notice that this number can be computed since it depends solely on what is given (xi) and the
current estimates âi, t̂i. To simplify expressions, also let s =

∑
i ei. Then, we can write

Q(a, t; â, t̂) = (n− s) ln(a0) + (s) ln(1− a0)−
1

2

∑
i

(1− ei) (xi − t0)2 −
1

2

∑
i

ei (xi − t1)2.

Setting the gradient of this function with respect to a, t to zero, we obtain the following set of
equations that the maximizers ā, t̄ should satisfy.

n− s
ā0
− s

ā0
= 0, (1)

n∑
i=1

(1− ei) (t̄0 − xi) = 0, (2)

n∑
i=1

ei (t̄1 − xi) = 0. (3)

Solving for the unknowns, we find the maximizers as

4

ā0 =
n− s
n

, (4)

t̄0 =
1

n− s

n∑
i

(1− ei)xi, (5)

t̄1 =
1

s

n∑
i

ei xi, (6)

(7)

We update â := ā, t̂ := t̄ and repeat the procedure over.
Let us now experiment numerically.

In [3]: # the Gaussian pdf

def g(x , m):

return (1 / numpy.sqrt(2 * numpy.pi))

* numpy.exp(-0.5 * (x - m)**2)

the Gaussian mixture pdf

def f(x , t , a):

return a * g(x , t[0]) + (1 - a) * g(x , t[1])

initialize

a = 0.5

t = [-1 , 1]

for iter in range(0,1000):

the expectation step

e = (1 - a) * g(x, t[1]) / f(x , t , a)

s = sum(e)

maximization step

a = (n - s) / n # update the weight parameter

t[0] = sum((1 - e) * x) / (n - s)

t[1] = sum(e * x) / s

That’s it. We now have our estimates of α and θ. Let’s sketch the resulting Gaussian mixture
pdf to see how well it matches the normalized histogram.

In [4]: u = numpy.arange(-20 , 20 , 0.1)

h , u = numpy.histogram(x , u , density = True)

plt.plot(u[0:-1] , h , label = "Normalized Histogram of Observations")

plt.plot(u , f(u , t , a) , 'r-' , label = "Estimated pdf")

plt.legend(bbox_to_anchor = (0. , 1.02 , 1. , .102) ,

loc = 3 , mode = "expand" , borderaxespad = 0.)

plt.show()

5

6

