The Expectation Maximization Algorithm

Tlker Bayram

October 26, 2016

EM is an iterative procedure for obtaining maximum likeliood (ML) estimates. Suppose that X
is distributed according to the pdf fx(+;6), where 6 is an unknown parameter of interest. Suppose
also that we have n independent samples from fx as, x = (z1,...,2,). Given z, recall that the
ML estimate is the maximizer of the likelihood function L(-) = fx(z;-), and is given by,

0= arg max {L(t) = fx(@;t) := fo(wi;t)} :

=1

When L(t) has a simple expression, the ML estimate can be obtained analytically. However, in
many scenarios of interest, this is not the case. EM is an iterative procedure for finding a local
maximum of L(-).

Example : Suppose Z is a Bernoulli random variable with PMF

P() a, ifz:1,
Z) =
7 ar=1—ap, ifz=0,

where o is an (unknown) constant. Given a realization of Z as z, suppose X is given as,

¥ — w+ 6y, if z=0,
w6y, ifz=1,

where w ~ N (0,1) and 6; are unknown. Note that the distribution of X is

[x(x) = ag g(z;00) + a1 g(x;01),

where

1 1
z;0) = ——exp [—=(z — 6)%).
olai0) = = exp (~ 3o 0

Suppose we are given independent realizations of X and asked to estimate a; and ;. Notice
that here, z;’s are unknown to us (constituting the hidden states, according to hidden Markov
models terminology). Let us produce such a set of x;’s. In order to hide «;’s and 6;’s, we also select
them randomly.

In [1]: import numpy
n = 1000 #number of samples
alp0 = numpy.random.uniform(0,1,1)

alpl = 1 - alpO
theta = numpy.random.normal(0,5,2)
z = numpy.double(numpy.random.uniform(0,1,n) > alpO)
X = z * numpy.random.normal (theta[0],1,n)
+ (1-2z) * numpy.random.normal (thetal[1],1,n)

In the following, we pretend that we just observe x. Let us view the histogram of the data.

In [2]: import matplotlib.pyplot as plt
plt.hist(x,100)
plt.title("Histogram of the Observed Data')
plt.show()

5o Histogram of the Observed Data

Unless the 8 values are very close or one of « is close to unity, we should see two modes, possibly
with different weights.

We will see in the following that if we knew z;’s, maximizing the likelihood function wrt a; and
0; is much easier. The idea in EM, to be detailed below, is to estimate, in an iterative manner, z;’s
as well as the unknown parameters «, 6;.

Let us now consider the hypothetical case where both x;’s and z;’s are known. Given z;’s let I
and I; denote the set of indices such that

0, ifie Iy,
Z; =
1, iféie .

Note that Iy U Iy = {1,2,...,n}. The likelihood function in this case is denoted as L(«,#), and is

given as,

= _ gl il 1 1
L(a,t) = a}* af G P —2; z; — to) +; zi—t)? |,
ASH Xo) el

where |I;| denotes the number of elements in [;. Note that |I;| = n — |Iy]. Using this as well as
a1 =1 — ag, we can write the log-likelihood function as,

- 1 1
InL(a,t) = [Io| In(ao) + (n — |o]) In(1 — ao) — 5 > (@i —to)? - 3 D (@i — 1)
ie[() i€l

Setting the gradient of this function to zero, we obtain the following set of equations

[fo| _n—1|lo| _,
Qo 1—ag ’
Z(éo - J:l) = 05
i€lp
Z(él - a:,) =0.
i€l

Solving for the unknowns, we obtain the maximizers

R |Io|
0=
0 Zl‘u
|IO ZEIQ
S
n- | 0‘ i€l

However, when knowledge about z is missing, the ML estimates of a; and 6; are not easy to
obtain. The idea in EM is to estimate the the log likelihood with the full data (including z) using
the current estimates of «;, 0;, and then use this estimated log-likelihood function to re-estimate
(or, update the estimates of) «; and 6;. More precisely, suppose we have the observations z; and
our current estimates of the unknown parameters are a;, t;. Then, instead of In E(a,t), consider
the function

Q(a,t;a,t) = E;: (ln L(a, t))
= Zlnf’(a)t) PZ\X(Z|I" &75)

Notice that, here the expectation is computed using the PMF of z given x by taking the
parameters o and # as G and . Observe also that this gives a function Q(a,t;a,t) that depends
only on a; and t;. We maximize this function of a and ¢ to update the desired parameters. That is
our new estimates of a and # are given as,

(a,1) := argmax Q(a, t; a,1t).

a,t

Then we repeat the procedure over to further refine our estimates and continue ad infinitum. This
is the expectation maximization algorithm.
For our problem, we can express Q(a,t;a,t) as follows.

Qa,t;a,f) = > InL(a,t) Py x(2]asa,)
= Z(|IO| In(ag) + (n — |Io|) In(1 — ao)
—— Z —t() —;Z(l'i_tl)2> PZ|X(Z|'Z‘;&7£)

ZEI() el

Observe also that, taking into account the fact that z; can only take values from {0, 1}, we can
write the term inside the parentheses as,

(n - Z zi> In(ag) + (Z zi> In(1 —ap) — % Z(l — z) (x; —tg)? — é Zzz (z;

2

Therefore, if we set e; = E; ;(2]2;), then we can express Q(a,t; a, t), as

I 1
Q(a,t;a,t) <n— Zez> In(ag) (ZeZ) ln(l—ao)—§ Z:(l—eZ x;—10) —fZez —t1
(A 1
I leave it to you to verify that

(1—ao) g(ws11)

E, :(zi|x:) = - = A -
G g glais to) + (1 — do) (s th)

Notice that this number can be computed since it depends solely on what is given (x;) and the
current estimates d;, t;. To simplify expressions, also let s = > ;€. Then, we can write

Qla,t:6,7) = (n — 5) In(ag) + () In(1 — ag) — % (1= ex) s = to)? ;Z e: (i

Setting the gradient of this function with respect to a, t to zero, we obtain the following set of
equations that the maximizers a, t should satisfy.

na—OS . dio :O’ (1)
S0 i) (o — 1) =0, (2)

=1

Z €; (51 — .CL‘Z) = 0. (3)
i=1

Solving for the unknowns, we find the maximizers as

_ n—s
ag = ——, (4)
1 n

to = > (1 —e)m, (5)

n—s

%

1 &
t1 = 3 Zeixi, (6)

We update @ := @, t := ¢ and repeat the procedure over.
Let us now experiment numerically.

In [3]: # the Gaussian pdf
def g(x , m):
return (1 / numpy.sqrt(2 * numpy.pi))
* numpy.exp(-0.5 * (x - m)**2)

the Gaussian mizture pdf
def f(x , t , a):
return a * g(x , t[0]) + (1 -a) *x g(x, t[1])

initialize
a=20.5
t=[-1, 1]

for iter in range(0,1000):

the expectation step
(1 -a)*xglx, tl1]1) /£(x, t, a)
sum(e)

mazimization step

a=(n-s)/ n # update the weight parameter
t[0] =sum((1 -e) *x)/ (n-s)

t[1] = sum(e x x) / s

That’s it. We now have our estimates of o and 6. Let’s sketch the resulting Gaussian mixture
pdf to see how well it matches the normalized histogram.

In [4]: u = numpy.arange(-20 , 20 , 0.1)
h , u = numpy.histogram(x , u , density = True)
plt.plot(ul0:-1] , h , label = "Normalized Histogram of Observations")
plt.plot(u , f(u , t , a) , 'r-' , label = "Estimated pdf")

plt.legend(bbox_to_anchor = (0. , 1.02 , 1. , .102) ,
loc = 3 , mode = "expand" , borderaxespad = 0.)
plt.show()

— Normalized Histogram of Observations
— Estimated pdf

D.S T T T T T T

0.4 |

0.3 |

0.2 |

0.1}

D.U 1 1 1 1

-20 -15 -10 -5 0 5 10

