The Expectation Maximization Algorithm

İlker Bayram

October 26, 2016

EM is an iterative procedure for obtaining maximum likelihood (ML) estimates. Suppose that X is distributed according to the pdf $f_X(\cdot; \theta)$, where θ is an unknown parameter of interest. Suppose also that we have n independent samples from f_X as, $x = (x_1, \ldots, x_n)$. Given x, recall that the ML estimate is the maximizer of the likelihood function $L(\cdot) = f_X(x; \cdot)$, and is given by,

$$
\hat{\theta} = \arg \max_t \left\{ L(t) = f_X(x; t) := \prod_{i=1}^{n} f_X(x_i; t) \right\}.
$$

When $L(t)$ has a simple expression, the ML estimate can be obtained analytically. However, in many scenarios of interest, this is not the case. EM is an iterative procedure for finding a local maximum of $L(\cdot)$.

Example: Suppose Z is a Bernoulli random variable with PMF

$$
P_Z(z) = \begin{cases}
\alpha_0, & \text{if } z = 1, \\
\alpha_1 = 1 - \alpha_0, & \text{if } z = 0,
\end{cases}
$$

where α_0 is an (unknown) constant. Given a realization of Z as z, suppose X is given as,

$$
X = \begin{cases}
w + \theta_0, & \text{if } z = 0, \\
w + \theta_1, & \text{if } z = 1,
\end{cases}
$$

where $w \sim \mathcal{N}(0,1)$ and θ_i are unknown. Note that the distribution of X is

$$
f_X(x) = \alpha_0 g(x; \theta_0) + \alpha_1 g(x; \theta_1),
$$

where

$$
g(x; \theta) = \frac{1}{\sqrt{2\pi}} \exp \left(\frac{-1}{2} (x - \theta)^2 \right) .
$$

Suppose we are given independent realizations of X and asked to estimate α_i and θ_i. Notice that here, z_i’s are unknown to us (constituting the hidden states, according to hidden Markov models terminology). Let us produce such a set of x_i’s. In order to hide α_i’s and θ_i’s, we also select them randomly.

In [1]: import numpy

n = 1000 #number of samples
alp0 = numpy.random.uniform(0,1,1)
\[
\text{alp1} = 1 - \text{alp0}
\]
\[
\theta = \text{numpy.random.normal(0,5,2)}
\]
\[
z = \text{numpy.double(numpy.random.uniform(0,1,n) > alp0)}
\]
\[
x = z \times \text{numpy.random.normal}(\theta[0],1,n)
\]
\[
+ (1-z) \times \text{numpy.random.normal}(\theta[1],1,n)
\]

In the following, we pretend that we just observe \(x \). Let us view the histogram of the data.

In [2]: import matplotlib.pyplot as plt
 plt.hist(x,100)
 plt.title("Histogram of the Observed Data")
 plt.show()

![Histogram of the Observed Data](image)

Unless the \(\theta \) values are very close or one of \(\alpha \) is close to unity, we should see two modes, possibly with different weights.

We will see in the following that if we knew \(z_i \)'s, maximizing the likelihood function wrt \(\alpha_i \) and \(\theta_i \) is much easier. The idea in EM, to be detailed below, is to estimate, in an iterative manner, \(z_i \)'s as well as the unknown parameters \(\alpha_i, \theta_i \).

Let us now consider the hypothetical case where both \(x_i \)'s and \(z_i \)'s are known. Given \(z_i \)'s let \(I_0 \) and \(I_1 \) denote the set of indices such that
\[
z_i = \begin{cases}
0, & \text{if } i \in I_0, \\
1, & \text{if } i \in I_1.
\end{cases}
\]

Note that \(I_0 \cup I_1 = \{1, 2, \ldots, n\} \). The likelihood function in this case is denoted as \(\tilde{L}(\alpha, \theta) \), and is
given as,
\[\tilde{L}(a, t) = a_0^{\mid I_0 \mid} a_1^{\mid I_1 \mid} \frac{1}{(2\pi)^{n/2}} \exp \left(-\frac{1}{2} \sum_{i \in I_0} (x_i - t_0)^2 + \sum_{i \in I_1} (x_i - t_1)^2 \right), \]

where \(\mid I_i \mid \) denotes the number of elements in \(I_i \). Note that \(\mid I_1 \mid = n - \mid I_0 \mid \). Using this as well as \(\alpha_1 = 1 - \alpha_0 \), we can write the log-likelihood function as,
\[\ln \tilde{L}(a, t) = \mid I_0 \mid \ln(a_0) + (n - \mid I_0 \mid) \ln(1 - a_0) - \frac{1}{2} \sum_{i \in I_0} (x_i - t_0)^2 - \frac{1}{2} \sum_{i \in I_1} (x_i - t_1)^2. \]

Setting the gradient of this function to zero, we obtain the following set of equations
\[
\begin{align*}
\frac{\mid I_0 \mid}{\hat{\alpha}_0} - \frac{n - \mid I_0 \mid}{1 - \hat{\alpha}_0} &= 0, \\
\sum_{i \in I_0} (\hat{\theta}_0 - x_i) &= 0, \\
\sum_{i \in I_1} (\hat{\theta}_1 - x_i) &= 0.
\end{align*}
\]

Solving for the unknowns, we obtain the maximizers
\[
\begin{align*}
\hat{\alpha}_0 &= \frac{\mid I_0 \mid}{n}, \\
\hat{\theta}_0 &= \frac{1}{\mid I_0 \mid} \sum_{i \in I_0} x_i, \\
\hat{\theta}_1 &= \frac{1}{n - \mid I_0 \mid} \sum_{i \in I_1} x_i.
\end{align*}
\]

However, when knowledge about \(z \) is missing, the ML estimates of \(\alpha_i \) and \(\theta_i \) are not easy to obtain. The idea in EM is to estimate the the log likelihood with the full data (including \(z \)) using the current estimates of \(\alpha_i, \theta_i \), and then use this estimated log-likelihood function to re-estimate (or, update the estimates of) \(\alpha_i \) and \(\theta_i \). More precisely, suppose we have the observations \(x_i \) and our current estimates of the unknown parameters are \(\hat{a}_i, \hat{t}_i \). Then, instead of \(\ln \tilde{L}(a, t) \), consider the function
\[
Q(a, t; \hat{a}, \hat{t}) = \mathbb{E}_{a, \hat{t}} \left(\ln \tilde{L}(a, t) \right) = \sum_z \ln \tilde{L}(a, t) P_{Z|X}(z|x; \hat{a}, \hat{t})
\]

Notice that, here the expectation is computed using the PMF of \(z \) given \(x \) by taking the parameters \(\alpha \) and \(\theta \) as \(\hat{a} \) and \(\hat{t} \). Observe also that this gives a function \(Q(a, t; \hat{a}, \hat{t}) \) that depends only on \(a_i \) and \(t_i \). We maximize this function of \(a \) and \(t \) to update the desired parameters. That is our new estimates of \(\alpha \) and \(\theta \) are given as,
\[
(\hat{a}, \hat{t}) := \arg \max_{a, t} Q(a, t; \hat{a}, \hat{t}).
\]
Then we repeat the procedure over to further refine our estimates and continue ad infinitum. This is the expectation maximization algorithm.

For our problem, we can express $Q(a,t; \hat{a}, \hat{t})$ as follows.

$$Q(a,t; \hat{a}, \hat{t}) = \sum_z \ln \tilde{L}(a,t) \ P_{Z|X}(z|x; \hat{a}, \hat{t})$$

$$= \sum_z \left(|I_0| \ln(a_0) + (n - |I_0|) \ln(1 - a_0) - \frac{1}{2} \sum_{i \in I_0} (x_i - t_0)^2 - \frac{1}{2} \sum_{i \in I_1} (x_i - t_1)^2 \right) P_{Z|X}(z|x; \hat{a}, \hat{t})$$

Observe also that, taking into account the fact that z_i can only take values from $\{0, 1\}$, we can write the term inside the parentheses as,

$$\left(n - \sum_i z_i \right) \ln(a_0) + \left(\sum_i z_i \right) \ln(1 - a_0) - \frac{1}{2} \sum_i (1 - z_i) (x_i - t_0)^2 - \frac{1}{2} \sum_i z_i (x_i - t_1)^2$$

Therefore, if we set $e_i = \mathbb{E}_{\hat{a}, \hat{t}}(z_i|x_i)$, then we can express $Q(a,t; \hat{a}, \hat{t})$, as

$$Q(a,t; \hat{a}, \hat{t}) = \left(n - \sum_i e_i \right) \ln(a_0) + \left(\sum_i e_i \right) \ln(1 - a_0) - \frac{1}{2} \sum_i (1 - e_i) (x_i - t_0)^2 - \frac{1}{2} \sum_i e_i (x_i - t_1)^2.$$

I leave it to you to verify that

$$\mathbb{E}_{\hat{a}, \hat{t}}(z_i|x_i) = \frac{(1 - \hat{a}_0) g(x_i; \hat{t}_1)}{\hat{a}_0 g(x_i; \hat{t}_0) + (1 - \hat{a}_0) g(x_i; \hat{t}_1)}$$

Notice that this number can be computed since it depends solely on what is given (x_i) and the current estimates \hat{a}_i, \hat{t}_i. To simplify expressions, also let $s = \sum_i e_i$. Then, we can write

$$Q(a,t; \hat{a}, \hat{t}) = (n - s) \ln(a_0) + (s) \ln(1 - a_0) - \frac{1}{2} \sum_i (1 - e_i) (x_i - t_0)^2 - \frac{1}{2} \sum_i e_i (x_i - t_1)^2.$$

Setting the gradient of this function with respect to a, t to zero, we obtain the following set of equations that the maximizers \hat{a}, \hat{t} should satisfy.

$$\frac{n - s}{\hat{a}_0} - \frac{s}{\hat{a}_0} = 0, \quad (1)$$

$$\sum_{i=1}^n (1 - e_i) (\hat{t}_0 - x_i) = 0, \quad (2)$$

$$\sum_{i=1}^n e_i (\hat{t}_1 - x_i) = 0. \quad (3)$$

Solving for the unknowns, we find the maximizers as
\[a_0 = \frac{n - s}{n}, \]
\[\bar{t}_0 = \frac{1}{n - s} \sum_i^n (1 - e_i) x_i, \]
\[\bar{t}_1 = \frac{1}{s} \sum_i e_i x_i, \]

We update \(\hat{a} := \bar{a}, \hat{t} := \bar{t} \) and repeat the procedure over.

Let us now experiment numerically.

In [3]: # the Gaussian pdf
def g(x, m):
 return (1 / numpy.sqrt(2 * numpy.pi)) *
 numpy.exp(-0.5 * (x - m)**2)

the Gaussian mixture pdf
def f(x, t, a):
 return a * g(x, t[0]) + (1 - a) * g(x, t[1])

initialize
a = 0.5
r = [-1, 1]

for iter in range(0,1000):
 # the expectation step
e = (1 - a) * g(x, t[1]) / f(x, t, a)
s = sum(e)

 # maximization step
 a = (n - s) / n # update the weight parameter
 t[0] = sum((1 - e) * x) / (n - s)
 t[1] = sum(e * x) / s

That’s it. We now have our estimates of \(\alpha \) and \(\theta \). Let’s sketch the resulting Gaussian mixture pdf to see how well it matches the normalized histogram.

In [4]: u = numpy.arange(-20, 20, 0.1)
h, u = numpy.histogram(x, u, density=True)
plt.plot(u[0:-1], h, label="Normalized Histogram of Observations")
plt.plot(u, f(u, t, a), 'r-', label="Estimated pdf")
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
 loc=3, mode="expand", borderaxespad=0.)
plt.show()