Derivation of the Dual-Expression for Earth-Mover's (Wasserstein-1) Distance

İlker Bayram
ibayram@ieee.org

February 7, 2024

1 Introduction

Given two pdfs $f(\cdot), g(\cdot)$, on \mathbb{R}^{n}, the earth-mover's distance between them is defined as

$$
\begin{equation*}
W(f, g)=\inf _{T \in \Pi(f, g)}\left\{\mathbb{E}_{T}(\|x-y\|)=\iint\|x-y\| T(x, y) d x d y\right\} \tag{1}
\end{equation*}
$$

where $\Pi(f, g)$ denotes the set of pdfs on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with marginals f and g. That is, if $T \in \Pi(f, g)$, then it satisfies,

$$
\begin{align*}
& \int T(x, y) d y=f(x) \tag{2}\\
& \int T(x, y) d x=g(y) \tag{3}
\end{align*}
$$

In the following, we will show the well-known results that this distance can also be computed as

$$
\begin{equation*}
W(f, g)=\sup _{h \in 1-\operatorname{Lip}}\left\{\mathbb { E } _ { f } \left(h(\cdot)-\mathbb{E}_{g}\left(h(\cdot)=\int f(x) h(x) d x-\int g(x) h(x) d x\right\}\right.\right. \tag{4}
\end{equation*}
$$

where 1-Lip denotes the set of functions that satisfy

$$
\begin{equation*}
\|h(x)-h(y)\| \leq\|x-y\| . \tag{5}
\end{equation*}
$$

2 The Dual Problem

This result follows by considering the dual problem obtained via the Lagrangian. We first form the equivalent saddle problem for (1) as

$$
\begin{align*}
& \inf _{T} \sup _{\lambda_{0}(\cdot), \lambda_{1}(\cdot), \beta(\cdot, \cdot) \geq 0} \iint\|x-y\| T(x, y) d x d y \\
& -\int \lambda_{0}(x)\left[\int T(x, y) d y-f(x)\right] d x-\int \lambda_{1}(y)\left[\int T(x, y) d x-g(y)\right] d y \\
& -\int \beta(x, y) T(x, y) d x d y \tag{6}
\end{align*}
$$

Note that here, $\lambda_{i}(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\beta(\cdot, \cdot): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Rearranging, we can rewrite the saddle-point problem as

$$
\begin{align*}
\sup _{\lambda_{0}(\cdot), \lambda_{1}(\cdot), \beta(\cdot, \cdot) \geq 0} \inf _{T} \int \lambda_{0}(x) f(x) d x & +\int \lambda_{1}(x) g(x) d x \\
& +\iint T(x, y)\left[\|x-y\|-\lambda_{0}(x)-\lambda_{1}(y)-\beta(x, y)\right] d x d y \tag{7}
\end{align*}
$$

Note that for the inner minimization over T to assume a finite value, the terms inside the square bracket must evaluate to zero. Equivalently, we must have

$$
\begin{equation*}
\lambda_{0}(x)+\lambda_{1}(y)+\beta(x, y)=\|x-y\| . \tag{8}
\end{equation*}
$$

Because of the constraint $\beta(x, y) \geq 0$, this implies that

$$
\begin{equation*}
\lambda_{0}(x)+\lambda_{1}(y) \leq\|x-y\| \tag{9}
\end{equation*}
$$

Evaluating this at $y=x$, we find

$$
\begin{equation*}
\lambda_{0}(x)+\lambda_{1}(x) \leq 0 \quad \Longleftrightarrow \quad \lambda_{1}(x) \leq-\lambda_{0}(x) \tag{10}
\end{equation*}
$$

Let us use these observations in (7). Note that, since the term that involves T evaluates to zero, (7) reduces to

$$
\begin{equation*}
\sup _{\lambda_{0}(\cdot), \lambda_{1}(\cdot)} \int \lambda_{0}(x) f(x) d x+\int \lambda_{1}(x) g(x) d x \quad \text { subject to } \lambda_{0}(x)+\lambda_{1}(y) \leq\|x-y\| \tag{11}
\end{equation*}
$$

Inserting the inequality in (10), we find that the term to be maximized is upper bounded by

$$
\begin{equation*}
\int \lambda_{0}(x) f(x) d x-\int \lambda_{0}(x) g(x) d x \tag{12}
\end{equation*}
$$

However, this upper bound can be satisfied by setting $\lambda_{1}(x)=-\lambda_{0}(x)$. Plugging this in (and renaming λ_{0} as h, the maximization problem reduces to

$$
\begin{equation*}
\sup _{h(\cdot)} \int h(x) f(x) d x-\int h(x) g(x) d x \quad \text { subject to } h(x)-h(y) \leq\|x-y\| \tag{13}
\end{equation*}
$$

This is exactly the problem in (4), (5).

