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ABSTRACT

We consider the minimization of the `p norm subject to con-
vex constraints. The problem considered in this paper may be
regarded as a relaxation of a similar problem that employs the
`1 norm. We derive the dual problem, which is unconstrained
and devise an algorithm for the dual problem by adapting the
Douglas-Rachford algorithm. We demonstrate the utility of
the algorithm on an experiment and discuss its differences
with an existing algorithm.

Index Terms— Basis pursuit, Douglas-Rachford algorithm,
minimum norm solution, Dykstra’s algorithm, bridge esti-
mate.

1. INTRODUCTION

Let K1, K2, . . . , Kk be closed, convex sets (with nonempty
intersection) in Rn. In this paper, we consider the minimiza-
tion problem,

min
x∈K1∩K2...∩Kk

‖x ‖p (1)

for 1 < p < ∞. We derive a dual problem and making
use of the dual problem, propose an algorithm to obtain the
minimizer.
Although solving (1) with p 6= 1 could be of interest per se
(see e.g. [8], Sec.6), we consider it as a variation of the basis
pursuit (BP) problem [3],

min ‖x ‖1 s.t. Ax = d . (2)

BP is equivalent to a linear program and can be solved as
such. However, if the observations ‘d’ are noisy, instead of
BP, it is desirable to consider the problem

min ‖x ‖1 s.t. ‖Ax−d ‖2 ≤ ε, (3)

where ε is related to the noise level. One approach to address
this problem is to consider the unconstrained problem

x̂λ = argmin
x

‖Ax−d ‖22 + λ ‖x ‖1. (4)
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For each λ, if we set ελ = ‖Axλ−d ‖2, then xλ is the min-
imizer of (3) for ε = ελ. Moreover, for fixed ε, we can find
λε s.t. ‖Axλε −d ‖ = ε – that is, xλε solves (3). There are
methods (see, e.g. [7]) to trace the solutions xλ as λ is varied.
As a variant of this, [1] traces the solutions of the LASSO
problem

min
x
‖Ax−d ‖2 s.t. ‖x ‖1 ≤ τ (5)

for different τ . We also refer to [8] for a relevant interesting
approach, which obtains an algorithm for LASSO through a
study of the so-called ‘bridge estimators’.
In this paper, we replace

(i) the `1 norm with the `p norm,

(ii) consider a more general constraint of the form
x ∈ K1 ∩ . . . ∩Kk where Ki’s are closed convex sets.

These changes lead to the following advantages.
(i) The solution of the dual-problem for the `1 norm does

not directly lead to the solution of the primal problem.
Relaxing the `1 norm allows us to link the primal and
the dual solution directly.

(ii) Decomposing the constraint set K as K = K1 ∩ . . . ∩
Kk, allows us to utilize the projections onto Ki’s which
can be easier to realize than projections onto K.

As a final remark, we note that another approach to solving
(1) might be to employ more general ‘parallel proximal algo-
rithms’ as described in [4, 13]. These algorithms employ pro-
jections or proximal mappings that are as easy to realize as the
ones in the proposed algorithm. Parallel proximal algorithms
are also attractive as they can work with p = 1. However, they
are different from the proposed algorithm in that they do not
differentiate between the `p term and the constraint projec-
tions in (1). We provide a further discussion on the possible
consequences in Section 4.

Outline
In Section 2 we derive the dual problem and Proposition 1.
The Douglas-Rachford algorithm is briefly reviewed and
adapted to the dual-problem in Section 3. In Section 4 we
provide two different applications of the algorithm. Section 5
is the conclusion.



Notation
Throughout the paper, bold variables, like z, denote vectors
in Rn. We denote the ith component of a vector z as either zi
or z(i). We caution that, terms like zi denote vectors in Rn.
For a set K, the ‘support function’ of K, denoted by σK(x),
is defined as σK(x) = supz∈K〈x, z〉. We refer to [12] for a
detailed investigation.

2. THE DUAL PROBLEM

In this section, we derive the dual problem and discuss how
the solution of the dual problem is related to the solution of
the primal problem for p 6= 1. Specifically, we show that for
1/p+ 1/q = 1,

min
x∈K1∩K2...∩Kk

1

p
‖x ‖pp (6)

and

min
z1,z2,...,zk

1

q
‖ z1 + z2 + . . .+ zk ‖qq + sup

x1∈K1

〈x1, z1〉

+ sup
x2∈K2

〈x2, z2〉+ . . .+ sup
xk∈Kk

〈xk, zk〉. (7)

are dual to each other. The minimizers of the two problems
are related as,

Proposition 1. Suppose that 1 < p <∞. If {z∗1 z∗2 . . . , z
∗
k}

minimize (7), then for z∗ = z∗1 + z∗2 + . . .+ z∗k,

x∗ = − sign(z∗)| z∗ |q−1 :=


− sign(z∗1) (z

∗
1)
q/p

− sign(z∗2) (z
∗
2)
q/p

...
− sign(z∗n) (z

∗
n)
q/p

 (8)

minimizes (6).

Remark 1. For p = 2 (and hence q = 2), the primal-dual
pair is well known. Indeed, Dykstra’s algorithm [5, 10] can
be interpreted as a coordinate-descent type algorithm working
on the dual problem [9].

Remark 2. For p = 1, the solution of the dual gives the signs
of the solution for the primal problem.

The dual-problem consists of terms for which the ‘proximal
operators’ are feasible to realize. This in turn makes the
Douglas-Rachford algorithm feasible. Our plan is to adapt
the Douglas-Rachford algorithm to the dual problem and
obtain the minimizer of the primal problem by using Prop. 1.

Derivation of the Dual Problem
We start by noting that

P ∗ = inf
x∈K

1

p
‖x ‖pp = inf

x
sup
z

1

p
‖x ‖pp + 〈x, z〉 − σK(z)︸ ︷︷ ︸

h(x,z)

In words, the minimization problem (1) is equivalent to find-
ing the saddle point of h(x, z) (where we take K = ∩iKi).
Now if we define the dual function g(z) as,

g(z) = inf
x

1

p
‖x ‖pp + 〈x, z〉 − σK(z) (9)

we also have P ∗ = supz g(z) [12]. If the minimum of the
lhs of (9) is achieved at x∗, then, it can be shown that,

0 ∈ sign(x∗i ) |x∗i |p−1 + zi for i = 1, 2, . . . , n. (10)

Here, sign(t) is a set valued mapping1 defined as

sign(t) =


−1 if t < 0,

[−1, 1] if t = 0,

1 if t > 0.

(11)

From this, we obtain,

−zi ∈ sign(x∗i ) |x∗i |p−1 for i = 1, 2, . . . , n. (12)

Noting that, p− 1 = p/q, this is true if

x∗i = − sign(zi) |zi|q/p for i = 1, 2, . . . , n. (13)

Inserting this into the lhs of (9), and noting that q/p = q − 1,
we get

g(z) =
1

p
‖ z ‖qq + 〈− sign(z) | z |q/p, z〉 − σK(z)

=
1

p
‖ z ‖qq − ‖ z ‖qq − σK(z)

= −
(
1

q
‖ z ‖qq + σK(z)

) (14)

The dual problem maxz g(z), is therefore equivalent to,

min
z

1

q
‖ z ‖qq + σK(z). (15)

Now if K = K1 ∩K2 . . . ∩Kk then we have [12],

σK(z) = min
z1,...,zk

σK1
(z1) + . . .+ σKk(zk)

subject to z1 + z2 + . . .+ zk = z . (16)

Inserting (16) into (15), the dual problem becomes

min
z

1

q
‖ z ‖qq + σK1

(z1) + . . .+ σKk(zk)

subject to z1 + z2 + . . .+ zk = z, (17)

which is equivalent to (7). We see that if z∗ is the minimizer
of (17), the relation stated in Prop. 1 now follows from (12).
Notice that, unlike the primal problem, the dual problem is
unconstrained. This allows us to adapt known schemes to
come up with an algorithm that converges to the minimizer.
In the following, we adapt the Douglas-Rachford algorithm
[11, 6] to this problem.

1Actually, ‘sign(xi) |xi|p−1’ is the ith entry of the subgradient [12] of
‖x ‖pp.



3. ADAPTING THE DOUGLAS-RACHFORD
ALGORITHM

Given a minimization problem of the form,

min
z
f(z) + g(z) (18)

the Douglas-Rachford algorithm finds the minimizer through
successive application of some combination of proximal op-
erators of f and g. For a function h, its proximal operator
with parameter λ is a mapping that maps a point z to the min-
imizer of a functional defined in terms of h. More precisely,
it is the operator Jλh (·) defined as,

Jλh (z) = argmin
u

1

2λ
‖ z−u ‖22 + h(u). (19)

In terms of Jλf , Jλg , the proximal operators for f and g, the
Douglas-Rachford algorithm for solving (18) is [11, 6],

Algorithm 1 The Douglas-Rachford Algorithm
repeat
z← Jλf

(
2 Jλg (z)− z

)
+
(
z−Jλg (z)

)
until convergence
z← Jλg (z)

Application of the Douglas-Rachford Algorithm
to the Dual Problem
For our problem, we define f and g as,

f
(
z1, z2, . . . , zk

)
=

1

q

∥∥z1 + z2 + . . .+ zk
∥∥q
q
, (20a)

g
(
z1, z2, . . . , zk

)
= sup

x1∈K1

〈x1, z1〉+ sup
x2∈K2

〈x2, z2〉+ . . .

+ sup
xk∈Kk

〈xk, zk〉 (20b)

Algorithm 1 requires us to successively apply Jλf and Jλg . Let
us now derive what these operators correspond to, in our case.

Computation of Jλf
To compute Jλf (z1, z2, . . . , zk), we need to solve

min
u1,u2,...,uk

1

2
‖ z1−u1 ‖22 + . . .+

1

2
‖ zk −uk ‖22

+ λ/q
∥∥u1 + . . .+ uk

∥∥q
q
. (21)

The point Jλf (z1, z2, . . . , zk) is the unique point(
u1,u2, . . . ,uk

)
that satisfies,

0 ∈ u∗i − zi+λ sign
(
u∗1 + . . .+ u∗k

) ∣∣u1 + . . .+ uk
∣∣q−1

(22)

for i = 1, . . . , k.2 Summing these over i, we obtain,

0 ∈ u∗− z+λ k sign(u∗)|u∗ |q−1, (23)

where u∗ = u∗1 + . . . + u∗k and z = z1 + . . . + zk. Notice
that if we can solve for u∗, then,

u∗i = zi−λ sign(u∗)|u∗ |q−1. (24)

Let us therefore look at (23). For the jth entry of u∗, namely
u∗j , we need to solve

u∗j + (λ k) sign(u∗j ) |u∗j |q−1 = zj . (25)

To simplify notation, consider the problem of finding u ∈ R
such that

u+ d sign(u) |u|q−1 = z. (26)

for d > 0. We note that sign(u) = sign(z). Now taking
z > 0, again to further simplify the equality, we need to solve,
for u > 0,

u+ d uq−1︸ ︷︷ ︸
s(u)

= z. (27)

s(u) is a strictly increasing function with s(0) = 0 < z,
and s(z) > z. Therefore, there is a unique u that satisfies
s(u) = z with u ∈ (0, z). This u can be found by an iterative
algorithm.
An algorithm that solves (21) is thus,

Algorithm 2 Computation of Jλf
Input : z1, z2, . . . , zk ∈ Rn
Output : u1,u2, . . . ,uk ∈ Rn that minimizes (21)
z←

∑k
i=1 zi

d← λ k
for j = 1 to n do
a← 0
b← | z(j)|
repeat
c← (a+ b)/2
if c+ d cq−1 > | z(j)| then
b← c

else
a← c

end if
until a ≈ b
u(j)← sign

(
z(j)

)
(a+ b)/2

end for
for i = 1 to k do

ui ← zi−λ sign(u) |u |q−1
end for

2Notice that, here the argument of the ‘sign’ function is a vector – the
function is applied componentwise.



Computation of Jλg
To compute Jλg (z1, z2, . . . , zk), we need to solve

min
u1,...,uk

1

2
‖ z1−u1 ‖22 + . . .+

1

2
‖ zk −uk ‖22

+ λσK1
(u1) + . . .+ λσKk(uk). (28)

This functional is separable with respect to ui’s. Therefore,
we will only study the following minimization problem.

u∗ = argmin
u

1

2
‖ z−u ‖22 + λσK(u) (29)

The following proposition (see [2] for a derivation of a similar
result) will be used to obtain a description of the minimizer.

Proposition 2. Let K be a closed convex set. Then,

argmin
u

1

2
‖ z−u ‖22 + σK(u) = z−PK(z) (30)

where PK(z) is the projection of z to K (i.e. the closest point
in K to z).

Using this proposition, and noting that λσK(u) = σλK(u),
we can write

u∗ = z−PλK(z) (31)

Here it is important that the projection operator be easily re-
alizable.

Algorithm 3 Computation of Jλg
Input : z1, z2, . . . , zk ∈ Rn
Output : u1,u2, . . . ,uk ∈ Rn that minimizes (28)
for i = 1 to k do
ui ← zi−PλKi (zi)

end for

Remark 3. The projections in Algorithm 3 can be performed
in parallel. Taking this into account leads to significant re-
duction in running times, especially when the number of con-
straint sets is high, as in the Experiment discussed below.

4. EXPERIMENTS

We consider a denoising application where side information
is also available. We have at hand the noisy image, namely y
shown in Fig. 1a. We also have 1-D (Radon) projections of
the image along the angles θ = k π/18 for k = 0, . . . , 17.
We denote the linear operator which computes the 1-D pro-
jection along the angle k π/18 as Pk and the given projection
data at k π/18 as dk. Our primary variables are the wavelet
coefficients of the image (we used an orthonormal wavelet
transform with Daubechies filters that have 3 vanishing mo-
ments).

(a) (b)

(c) (d)

Fig. 1. Denoising with side information. The side information
consists of Radon projections along the angles k π/18 for k =
0, . . . , 17. (a) Noisy image, RMSE = 0.2. Solution for (b)
p = 2, RMSE = 0.0967, (c) p = 4/3, RMSE = 0.0679, (d)
p = 8/7, RMSE = 0.0615.

We denote the synthesis operator corresponding to the wavelet
basis as W . We also define the constraint sets as,

Ki = {x : PiW x = di} for i = 0, . . . , 17 (32)
K18 = {x : ‖W x− y‖ ≤ σ} (33)

where σ is taken as the standard deviation of the noise. Based
on these definitions, we consider the minimization problem,
‘minx∈K ‖x ‖p’, where K = K0 ∩ . . . ∩ K18. The results
are shown in Fig. 1(b,c) for p = 2, p = 4/3 and p = 8/7. We
observe that p ≈ 1 leads to an improved reconstruction. Note
that the formulation allows us to easily take into account data

25 50 75 100 125 150
−5

0

5

Iterations

L
o
g
-D

is
t.

to
P
ri
m
a
l
S
o
ln
.

 

 

p = 8/7
p = 4/3
Spingarn’s Alg.

Fig. 2. Log-distance to the primal limit for the proposed al-
gorithm and Spingarn’s algorithm, derived from [13].



which cannot be expressed as an affine space.

Comparison with Parallel Proximal Algorithms
As we noted in the Introduction, there are other algorithms
available for the primal problem (1). Specifically, let us con-
sider Spingarn’s method of partial inverses [13] applied to the
problem at hand (see Algorithm 4 below). For another similar
algorithm, see [4].

Algorithm 4 Spingarn’s Algorithm for (1)
Initialize x← 0, yi ← 0 for i = 0, 1, . . . ,m.

repeat
t0 ← argminz

1
2
‖x+ y0 − z‖22 + ‖z‖p

u0 ← x+ y0 − t0
for i = 1 to m do

ti ← PKi(x+ yi)
ui ← x+ yi − ti

end for
x← 1

m+1

∑m
i=0 ti

for i = 1 to m do
yi ← ui − 1

m+1

∑m
i=0 ui

end for
until convergence
x∗ ← x

Algorithm 4 consists of simple substeps like the proposed
algorithm. However, this algorithm treats the proximal map-
ping of the `p norm and the projections onto Ki’s in the
same manner. The updated information from the substeps
are merged only at the end of each iteration. On the other
hand, the proposed algorithm treats the two parts of the dual
problem differently. Once the projections onto Ki’s are per-
formed, this information is fed into the proximal mapping of
‖ · ‖qq .
In order to compare the performances of the two algorithms
we performed the following experiment on the phantom de-
noising problem described above. We ran both algorithms for
5000 iterations to obtain the ‘limit’ in each case. We note
that there are two limit points of interest – one for the pri-
mal, one for the dual problem, related to each other through
(12). Although the proposed algorithm works on the dual, we
are interested in the ability of the algorithm to approach the
minimizer of the primal problem in as few iterations as pos-
sible. In order to provide a fair comparison, we normalized
distances by setting the norm of the corresponding limit to
unity.
Fig.2 depicts the log-distance to the primal-limit for the pro-
posed algorithm and Spingarn’s algorithm. Since the pro-
posed algorithm works on the dual-problem, we cannot claim
that the distance to the primal-limit will be monotone decreas-
ing. Indeed, the algorithm starts very far from the primal
limit and the distance to the primal limit does increase in the
first few iterations. However, interestingly, in 100 iterations,
the distance to the primal-limit for the proposed algorithm

is much lower, compared to Spingarn’s method. Consider-
ing the parallel nature of Spingarn’s method, the scheme pre-
sented in this paper allows, in a sense, to trade the parallel
structure for faster convergence (given limited resources).

5. CONCLUSION

We considered a variation of the ‘sparse reconstruction’ prob-
lem. Specifically, we replaced the the `1 norm with the `p
norm for p > 1, and studied a flexible formulation that allows
multiple constraints to be placed on the reconstruction. Al-
though minimum `p norm reconstructions, for p > 1, are no
longer sparse (in the strict sense of the word), this formula-
tion can also be feasible. For p ≈ 1, the solution of the primal
problem provides an approximation to the minimum `1 recon-
struction. We also demonstrated that the proposed algorithm
performs comparably with existing alternatives.
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