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ABSTRACT

Recently, different penalties have been proposed for signals
whose non-zero coefficients reside in a small number of
groups, where within each group, only few of the coefficients
are active. In this paper, we extend such a penalty, and in-
troduce an additional layer of grouping on the coefficients.
Specifically, we first partition the signal into groups, and then
apply the penalty on the `2 norms of the groups. We discuss
how this extended penalty can be used in energy minimiza-
tion formulations, and demonstrate the effects of the proposed
extension on a dereverberation experiment.

Index Terms— Sparsity within and across groups, elitist
Lasso, group sparsity, mixed norm, overlapping groups.

1. INTRODUCTION

Group-based sparsity inducing penalties are usually used to
encourage signals that can be well-approximated using a few
groups of variables. However, there exist other types of spar-
sity that can be observed in natural signals. In this paper,
we specifically consider signals that can be decomposed into
groups such that (i) only a few groups are non-zero, (ii) in a
non-zero group, only a few of the coefficients are non-zero.
It can be argued that the frequency representation of a nearly
periodic signal exhibits such a pattern [1].

The characteristic described above has been addressed in
the recent literature. The elitist-lasso [2], or exclusive lasso
[3] penalty sums the squares of the `1 norms of the groups to
encourage such a characteristic. An alternative is the sparse-
group Lasso [4, 5], where the penalty consists of the sum of
an `2,1 norm and an `1 norm. These penalty functions are
convex. We proposed a non-convex penalty for the mentioned
characteristic in [1], where we referred to it as ‘sparsity within
and across groups’ (SWAG). We argued in [1] that by for-
going convexity, the SWAG penalty can be used to produce
estimates with reduced bias.

In the SWAG penalty, groups are required to be non-
overlapping, and within a group, the variables are treated
symmetrically – that is, within a group, the penalty is invari-
ant to permutations of the variables. In order to introduce
some flexibility in forming the groups, we proposed a modi-

fication in [6], and defined a penalty on the vector x as,

‖x‖1 +
∑
n,m

wn,m|xn xm|, (1)

for a given collection of weights wn,m ≥ 0. For fixed n,
we can think of the collection of xm such that wn,m > 0
as defining a group centered around xn. Since the weights
wn,m are allowed to be different, this group definition is more
flexible compared to that in [1].

In this paper, we introduce an additional layer of group-
ing to this definition. Specifically, we first partition the signal
into groups, and then apply the penalty on the `2 norms of
the groups. As we will demonstrate in the experiment sec-
tion, this allows to capture a more realistic model for the
time-frequency coefficients of audio signals such as speech
or music.

Proposed Modification
Suppose we are given a partition of the input vector x as C =
{x1, x2, . . . xK}, where each xk is a vector that contains some
components of x. We refer to xk as the kth group. We assume
that xk’s cover x, and they do not overlap. That is, for any n,
we can find a unique k such that xn is a component of xk. In
this setting, we propose the following penalty function

PW (x) =
∑
n

‖xn‖2 +
1

2

∑
n,m

wn,m ‖xn‖2 ‖xm‖2, (2)

where wn,m ≥ 0. We will also assume throughout that
wn,n = 0 for all n, and wn,m = wm,n for all n,m.

In this paper, we consider using this penalty function in a
formulation of the form

min
x

f(x) + λPW (x). (3)

Provided f is convex and differentiable with a Lipschitz con-
tinuous gradient, we will derive a descent algorithm for (3).

In order to derive the promised descent algorithm, we will
start with the auxiliary problem

min
x
{C(x, y) = 1

2
‖x− y‖22 + λPW (x)}, (4)

where y is a given vector. The problem (4) may be regarded as
a denoising formulation, where y constitutes a noisy observa-
tion. The mapping that takes y to the minimizer of C(·, y)



is also referred to as the proximity operator of PW , when
PW (x) is convex [7, 8]. We continue to use the term ‘prox-
imity operator’, due to formal resemblance.

We first show in Section 2 that the problem in (4) is con-
vex with respect to x, provided λ satisfies an upper bound.
Following that, we derive a descent algorithm to obtain a min-
imizer of this function in Section 3. We present a dereverber-
ation experiment in Section 4. Section 5 contains remarks
pointing to a future direction to pursue.

Notation
For a vector z, we write ej∠z to denote the unit vector in the
direction of z. For a vector z of the same size as x above, we
assume that we have a partition of z similar to that of x, and
write zk to denote the kth group of z. That is, xn is in xk if
and only if zn is in zk.

For a complex number z, Re(z) denotes its real part.

2. WELL-POSEDNESS OF THE DENOISING
PROBLEM

PW (x), defined in (2), is a non-convex function of x. How-
ever, we show below that the cost function C(·, y) in (4) is
strictly convex, provided λ is small enough. In that case,
C(·, y) has a unique minimizer.

Observe now that

C(x, y) =

[
1

2
‖y‖22 − Re〈x, y〉+ λ

∑
n

‖xn‖2

]

+
1

2

{∑
n

‖xn‖22 + λ
∑
n,m

wn,m ‖xn‖2 ‖xm‖2

}
. (5)

The term inside the square brackets is convex for any choice
of λ. Therefore, if we can find a condition to ensure that the
term inside the curly brackets is convex, we are done. Notice
that we can rewrite that term as∑

n

‖xn‖22 − λ
∑
n,m

wn,m
1

2

(
‖xn‖22 + ‖xm‖22

)
+
λ

2

∑
n,m

wn,m

(
‖xn‖22 + ‖xm‖22 + 2‖xn‖2 ‖xm‖2

)
. (6)

Rearranging, this is equal to∑
n

(
1− λ

∑
m

wn,m

)
‖xn‖22

+
λ

2

∑
n,m

wn,m

(
‖xn‖2 + ‖xm‖2

)2
. (7)

The second term in this expression is convex. The first term
is strictly convex if

λ <
(∑

m

wn,m

)−1
, for all n. (8)

To summarize, we obtained the following result.

Proposition 1. Suppose wm,n = wn,m ≥ 0 for all n,m, and
wn,n = 0 for all n. If (8) holds, then for fixed y, C(·, y) in
(4) is strictly convex, and it has a unique minimizer.

This condition implies that I + λW can be decomposed
as DT D, where D has non-negative entries. In this case,
I + λW is said to be completely positive [9], although this
fact is not explicitly used for obtaining Prop 1. We refer to [6]
for a related discussion.

3. A DESCENT ALGORITHM

In this section, we derive a descent algorithm for (3). But
before we tackle this general problem, we consider (4), where
f is replaced with a simple energy term.

3.1. Denoising with the Proposed Penalty
In order not to complicate the notation, let us start by defining
a length-K vector u, such that uk = ‖xk‖2 for k = 1, . . . ,K.
Using u, we can write,

PW (x) = ‖u‖1 +
1

2
uT W u. (9)

The set {(u, x) : ui = ‖xi‖2, for all i} is not convex. How-
ever, the change of variables from u to x will be useful for
deriving a simple update step.

Suppose we partition y similarly as x to obtain the non-
overlapping groups yk, and let vk = ‖yk‖2. We have the
following lemma, which is key to our development.

Lemma 1. Let x̃ be the vector whose kth group is defined as
x̃k = ‖xk‖2 ej∠yk

. We have,

C(x; y) ≥ C(x̃; y) (10)

=
{
D(u; v) =

1

2
‖u− v‖22 + λ ‖u‖1 +

λ

2
uT W u

}
.

Proof. We first note that

Re(〈xk, yk〉) ≤ ‖xk‖2 ‖yk‖2 = Re(〈x̃k, yk〉). (11)

Therefore,

‖x− y‖22 =
∑
k

‖xk − yk‖22 (12)

=
∑
k

‖xk‖22 + ‖yk‖22 − 2Re(〈xk, yk〉) (13)

≥
∑
k

‖x̃k‖22 + ‖yk‖22 − 2Re(〈x̃k, yk〉) (14)

= ‖x̃− y‖22 (15)

Combining this observation with PW (x) = PW (x̃), the in-
equality C(x; y) ≥ C(x̃; y) follows.

Using (11), we have

‖x̃k − yk‖22 = (‖x̃k‖2 − ‖yk‖2)2 = (uk − vk)2. (16)

Thus ‖x̃− y‖22 = ‖u− v‖22. Since PW (x) = PW (x̃), noting
(9), we obtain the equality C(x̃; y) = D(u; v).



Observe that if all of the enries of u are non-negative, then
for xk = uk e

j∠yk

, we have ‖xk‖2 = uk, and D(u; v) =
C(x, y). This observation, along with Lemma 1 leads to the
following corollary.

Corollary 1. For given u, v, x, y, defined as above, suppose
û ≥ 0 satisfies

D(û; v) ≤ D(u; v)− d, (17)

for some d ≥ 0. Let x̂ be defined so that x̂k = ûke
j∠yk

.
Then,

C(x̂; y) ≤ C(x; y)− d. (18)

Further, if û minimizes D(·; v) over the positive orthant, then
x̂ minimizes C(·; y).

This corollary suggests that, instead of the problem in (4),
we can consider the constrained problem

min
u∈RK

+

D(u; v) (19)

For u ∈ RK
+ , D(u; v) is actually a quadratic function of u.

Therefore, the minimization problem in (19) is equivalent to,

min
u∈RK

+

1

2
uT (I + λW )u+ uT (λ1− v), (20)

where 1 denotes a vector of all ones. Notice that, if (I+λW )
positive definite, this problem is strictly convex, and it has a
unique minimizer. This is a less stringent condition than (8),
which ensures strict convexity of C(x, y). In the following,
we will assume that I + λW is positive definite, and (20) is a
convex problem.

The cost function in (20) is differentiable with a Lipschitz
continuous gradient. Further, the constraint set, namely RK

+ ,
has a simple projection operator. These two features make the
projected gradient algorithm (PGA) [10] a feasible choice to
obtain a descent algorithm for (20). At each iteration, PGA
consists of iterations of the form

u← P+

(
u− η

[
(I + λW )u+ (λ1− v)

])
, (21)

where η is a step-size. Suppose now that σ is the spectral
norm of I + λW . It can be shown similarly as in [6] (see the
proof of Prop.4), that if η < 2/σ, then the iterations in (21)
achieve descent on (20). This, along with the observation in
Cor. 1 allows us to obtain a descent algorithm for C(·, y),
as described in the following. Another option, pointed out by
one of our reviewers would be to employ an active set method,
which is guaranteed to terminate in a finite number of steps
for this problem (see e.g. [11], Sec. 16.4).

3.2. An Algorithm for (3)
We now consider the main problem (3), where the cost func-
tion is of the form

Q(x) = f(x) + λPW (x). (22)

We assume that f : Cn → Rn is a convex function. Fur-
ther, interpreting Cn as R2n, we assume that f is Fréchet-
differentiable, and that the Fréchet derivative is Lipschitz con-
tinuous with parameter L. That is,

‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2, for all x, y. (23)

Suppose that we set up an iterative algorithm for minimizing
Q(·). Also, let x̃ be our current iterate. Consider the follow-
ing function, defined using x̃ :

Q̂(x; x̃) =
1

2α

∥∥x− (x̃− α∇f(x̃))∥∥2
2
+ λPW (x). (24)

In this setting, following the majorization-minimization
framework [12], it can be shown (see for instance [6], Prop.2)
that, for α < 1/L, the inequality Q̂(x; x̃) ≤ Q̂(x̃; x̃) implies
Q(x) ≤ Q(x̃). In words, it is sufficient to perform descent
on Q̂, in order to achieve descent on Q. But upto a factor
of α, Q̂ is in the form of a denoising formulation studied in
Section 3.1, and we already derived how to achieve descent
on denoising formulations. Thus, we can perform descent for
(3). The resulting algorithm is summarized in Algorithm 1,
for convenience.

Algorithm 1 A Descent Algorithm for (3)
Require: L : Lipschitz const. of ∇f ; T : number of inner

iterations; W : weight matrix used in PW ; λ : weight of
the penalty function

1: Set α < 1/L, β ← αλ, η < 2/σ
(
I + βW

)
, initialize x

2: repeat
3: z ← x− α∇f(x)
4: uk ← ‖xk‖2 for k = 1, . . . ,K
5: vk ← ‖zk‖2 for k = 1, . . . ,K
6: for T iterations do
7: u← P+

(
u− η

[
(I + βW )u+ (β1− v)

])
,

8: end for
9: xk ← uk e

j ∠zk

for k = 1, . . . ,K
10: until convergence

4. NUMERICAL EXPERIMENT

To demonstrate the improvement obtained by the proposed
additional layer on the penalty function, we revisit the exper-
iment in [6]. This also gives us a chance to compare the algo-
rithm with other penalties such as the `1 norm or the SWAG
penalty from [1]. The signal of interest consists of a violin
playing a chromatic scale. The observation y consists of a
noisy and reverberant version of this signal. Given the room
impulse response, the effect of reverberation is modelled in
the STFT domain as a linear operator H [13]. The observed
signal is thus obtained by applyingH to the STFT coefficients
and adding circular (complex-valued) white Gaussian noise,
so that the SNR is 5 dB. The spectrograms of the clean and
reverberant signals are shown in Fig. 1.
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0 0.5 1 1.5 2

Time (seconds)

0

0.5

1

1.5

2

2.5

3

3.5

F
re

q
u
e
n
c
y
 (

k
H

z
)
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Fig. 1. (a) Original and (b) noisy reverberant observation sig-
nals in the STFT domain, used in the experiment in Section 4.
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Fig. 2. Groups are formed in the time-frequency plane as
shown in (a), to define the proposed penalty. Given the group-
ing, the sequence in (b) is used to define a Toeplitz weight
matrix W .

We consider the minimization formulation

min
x

1

2
‖y −Hx‖22 + P (x), (25)

where P is the penalty function.
In order to define the penalty from [6], we take a slice

of the time-frequency STFT coefficients parallel to the fre-
quency axis. For each time instance, there are 960 frequency
coefficients. Regarding such a slice as a 1D signal, we em-
ploy a ToeplitzW to define the penalty on the frequency slice.
The first row of this Toeplitz matrix is shown in Fig. 2b. We
remark that this is the same penalty function used in the ex-
periment in [6].

For the penalty function proposed in this paper, we first
form groups over the time-frequency plane as shown in
Fig. 2a. Specifically, we combine M time-adjacent coeffi-
cients to form a group. Replacing each group with its `2
norm, we obtain a new time-frequency signal. Then we apply
the penalty described in the previous paragraph to this new
signal to obtain the proposed penalty function.

Given these two penalty functions and the observation, we
need to set λ. We also replace W by γW for γ > 0, in order
to introduce a tuning parameter. For the penalty from [6] we

(a) Penalty in [6]
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(b) Proposed Penalty
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Fig. 3. Reconstructed signals using the formulation with (a)
the penalty in [6] (SNR = 8.17 dB), (b) the proposed penalty
(SNR = 8.43 dB).

perform a sweep search over λ and γ in order to obtain the
highest possible performance achieved with that penalty. The
resulting best reconstruction achieves an SNR of 8.17 dB, and
is shown in Fig. 3a.

For the proposed penalty we use the same λ found for the
penalty from [6], but we replace γ with γ

√
M . We set the

neighborhood size M to 2. Notice that since we do not per-
form a sweep search over γ, these parameters are suboptimal
(such a sweep search is not possible in practice anyway). For
these parameters, the reconstructed signal is shown in Fig. 3b.
The obtained SNR is 8.43 dB.

Aside from the improvement in SNR, the reconstructed
signal with the proposed modification contains less noise, in
between the harmonics. We think this is due to the regulariz-
ing effect of the employed grouping that is performed before
applying PW . Recall that for the current choice of W , PW

encourages high valued coefficients to be isolated. However,
due to noise, deciding whether a time-frequecy coefficient has
a high magnitude or not cannot be performed reliably. How-
ever, thanks to the harmonic structures in audio, high magni-
tude coefficients appear adjacent along the time axis. Group-
ing makes use of this fact, and leads to a more reliable esti-
mate of the magnitudes. This in turn enhances the effectivity
of the penalty function PW .

5. CONCLUSION

This paper extends a recently proposed group based penalty.
Specifically, we first partition the input vector into groups and
then apply the penalty to the `2 norms of the groups. The
overall penalty then has two layers of groups. The first layer
partitions the signal into non-overlapping groups. The second
layer works with the `2 norms of the groups from the first
layer, and allows the groups to overlap. A natural extension
of the current work is to allow the first layer to contain non-
overlapping groups as well. We hope to pursue this in future
work.
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