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Abstract—Recently, penalty functions promoting signals that
are sparse within and across groups have been proposed. In
this letter, we propose a modified penalty function that offers
additional flexibility in forming groups. We study the properties
of the penalty function and propose a new algorithm that can
be used in energy minimization formulations that employ it. We
demonstrate the effects of using the penalty function on a simple
linear inverse problem.

Index Terms—Structured sparsity, elitist LASSO, exclusive
LASSO, sparsity within and across groups

I. INTRODUCTION

Sparsity has played a major role in signal processing in the
last two decades. However, for many natural signals, plain
sparsity falls short of capturing the intrinsic characteristics
of the signal of interest. In recent work [4], we addressed a
specific form of sparsity, useful for signals that are composed
of a few number of groups where within each group, only a
few coefficients are active. We call this characteristic ‘sparsity
within and across groups’ (SWAG) (see also [23]). In this
letter, we propose a modification of this penalty to introduce
further flexibility in the definition of the groups.

A. The SWAG Penalty and Threshold Function

The SWAG penalty in [4] is a group-separable function.
Suppose we are given a vector x = (z1,Z9,...,zn). We
partition z into x!', x2, ..., zF. Each ™ is a collection of
distinct variables from z, referred to as a group. The SWAG

penalty in [4] is defined as
,y m m
P(x) =zl + 5 D2 Y laf*all. (1)
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The associated threshold function, or proximity operator [1],
[11] is defined as

1
T(2) = arg min S|z — 23 + A P(2). )

T(z) is well-defined if Ay < 1, in which case it can be
computed with a finite terminating procedure [4].

In the SWAG penalty, the groups are required to
be non-overlapping. If the groups share variables, the
penalty/threshold function is no longer group-separable, and
a finite terminating procedure for realizing the threshold func-
tion is not readily available. In that case, one way to realize
the threshold function is to split variables and employ group-
separable penalties iteratively in a splitting scheme such as the
Douglas-Rachford algorithm [10], [11], or ADMM [6]. Other
than the increase in the number of variables, such an approach
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Fig. 1. A visual description of the group structure using graphs. Each
variable is represented by a node. (a) This graph represents the partition
z! = (21,22,23), 2 = (w4, 5,76). (b) The proposed generalization
employs a weighted complete graph.

may not be feasible because some formulations may require
to compute infinite iterations within iterations — a procedure
not realizable in principle.

B. The Proposed Penalty

The proposed generalization is easy to describe using
graphs. Consider a vector © = (x1,2,...,Zg). Suppose we
partition x as 2! = (x1,29,73), 22 = (24,75,76). This
partition can be represented by the graph in Fig. la. Notice
that each group is associated with a complete graph. Since the
groups do not share variables, there are two disjoint complete
graphs.

The generalization we propose in this letter is to use a
complete weighted graph, as shown in Fig. 1b. The modified
penalty on C™ is then defined as

1
P (@) = ||zl + 5 ijw] i 25, 3)

For a specific choice of the weight matrix W, we can recover
the penalty (1). Therefore, Py is a generalization of P in (1).
The associated threshold function is defined as,

T\ w(z) = arg m%n {D)\’W(x; 2)
zeCnm

1
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We show in this letter that T w(z) is well-defined, if A
satisfies an upper bound determined by W.

C. Related Work and Contribution

The sparsity characteristic sought in this letter is different
than that sought in many papers using group-based penalty
functions. Specifically, [28], [20], [19], [2], [8] describe ap-
proaches for promoting signals that can be represented with a
few groups, where in a non-zero group, all of the coefficients
are non-zero. In contrast, [20], [21], [29], [26], [23], [4] host
approaches that aim a similar characteristic as the proposed
penalty. In this latter collection, the SWAG penalty [4], which
we aim to generalize, separates from the rest in that it is



a non-convex penalty. In [4], it was argued that this helps
reduce the bias in the non-zero estimates produced by the
threshold function (see also [7], [25] for related discussions).
For a more detailed comparison between the SWAG penalty
and the penalties in [20], [21], [29], we refer to [4].

An interesting difference, pointed out by one of the re-
viewers, between the SWAG penalty and Sparse Group Lasso
(SGL) [26], [23] concerns the distribution of non-zero vari-
ables across groups. The SGL penalty consists of the sum of
an /1 norm, and the sum of the ¢ norms of the groups (i.e., an
¢, norm [20]). Because of the /5 ; norm, SGL prefers fewer
non-zero groups, where within each active group, multiple
variables may be non-zero. In contrast, the SWAG penalty
in (1) favors solutions where the number of active variables
in each group is smaller but the number of active groups is
larger. While this appears to be a fundamental difference, the
effect also depends on how the groups are formed. If variables
that are associated with similar responses are grouped together,
then we expect this difference to be reduced.

The proposed modification to the SWAG penalty aims
to introduce further flexibility in forming the groups. First,
groups are allowed to overlap. Second, while the original
SWAG penalty in [4] uses constant weights within each group,
the proposed penalty allows the weights within a group to vary.
These in turn allow to achieve a more localized and translation-
invariant behavior, which is of interest for processing time-
domain signals. However, these modifications come at an
expense. Unlike the SWAG threshold function, the threshold
function for the proposed penalty cannot be computed with
a finite terminating procedure. Therefore, forward-backward
splitting type algorithms that might utilize T\ w [11], [12],
[14], [3] are not readily applicable for the proposed penalty.
We describe instead a descent algorithm for a generic formu-
lation that employs the proposed penalty.

Notation: For x € C", |z| denotes the magnitude vector of
the same size. Therefore, Y, ; w; j |z; z;| = |z|T W |z|. 1

1#]
denotes a vector of ones. For non-zero z € C", e denotes a

unit vector in the direction of z. For two vectors z, z in C", z z
denotes the vector obtained by element-wise multiplication.

C™ appears as a domain for some functions in the letter. For
inner products and gradients, we interpret C" as R?". Thus,
on C", we use the inner product (z,y) = >, real(z; y;).

Outline: In Section II, we derive a condition that ensures
Py is weakly-convex, which implies that Ty is well-defined.
We discuss in Section III how to construct a descent algorithm
when Py is used in a simple minimization formulation. We
demonstrate the utility of the proposed penalty in Section IV.
Section V contains an outlook.
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II. WEAK CONVEXITY OF THE PROPOSED PENALTY

In this section, we study the proposed penalty function and
show that it is weakly convex [27].

Beﬁnition 1. A function g is said to be a-weakly convex if
3 |lz||3 + g(x) is convex.

Our interest in showing the weak convexity of the proposed
penalty stems from available schemes such as [25], [3] that

make use of the weak convexity of the penalties. In addition,
weak-convexity of Py also implies that T’y is well-defined.
To see this, observe that Py is 1/\-weakly convex if and only
if Dy w(-; 2) is convex. In particular, if Dy w (-; 2) is strictly
convex, it has a unique minimizer, namely T w (z). However
we will later see in Prop. 3 that T’ y is well-defined for an
extended range of A\ values than those implied by Prop. 1 of
this section.

Strict convexity of |x|T (I+A W) |z| implies strict convexity
of Dy w(x;z) with respect to z. But due to the magnitude
operator |-|, positive definity of I+ W does not automatically
imply convexity of |z|T (I4+A W) |z|. Nevertheless, if I+ W
admits a decomposition of the form

I+ AW = RT R, with R, ; >0, for all 4,3, (5)

then D)y w is convex. To see this, observe that

2
|£E|T RTR|1“ = Z<Z Tij|1'j> .

i J

(6)

Since r;; > 0 for all 7, j, the term enclosed in parentheses in
(6) is convex for all ¢, from which convexity of D y follows.

Matrices that admit a decomposition as in (5) are called
completely positive [5]. Unfortunately, checking whether an
arbitrary psd matrix is completely positive or not is not trivial
when the size of the matrix exceeds 4 x 4 [16], [5]. However,
it is relatively simple to find an upper bound for A\ so that
I + AW is completely positive [5].

Proposition 1. For a non-negative W, Dy w(+; z) is strictly
convex if

A (max Zwm) < 1.
J

Sketch of a Proof. Dy y can be expressed as

(7

1
(501213 = 2(2,2) + Al | + {Jal” (T + AW)al}. ®)

The term inside the square brackets is convex with respect to
z, and (I + AW) can be shown to be completely positive,
after some algebra (or, see Thm. 3 in [5]). O

This proposition implies that T\ - is well-defined if (7)
holds. However, even though T) v is well-defined, it is not
easy to realize numerically. We discuss this issue in the sequel.

III. DESCENT ALGORITHMS

We derive a descent algorithm for a problem of the form
min {C(z) = f(x) + A Pw (@)}, ©)

where f(-) : C" — R is a convex function. Viewing C" as
R2", we also assume that f is Fréchet-differentiable [1], [22],
and its Fréchet-derivative, V f, is Lipschitz-continuous with
parameter L, i.e.,

IVi(z) = VW)l < Lllz = yll2, forall z,y.

We will derive the algorithm based on the majorization-
minimization scheme [18], [13].

(10)

Definition 2. A function g : C* — R is said to be a majorizer
for h : C" — R at z* if



(i) h(z*) = g(z"),
(i) h(z) < g(z) for all x € C™.

A. Majorizing “f(-)’
By the assumptions on f, we have (see, e.g., Cor.18.14,
»=(iv) in [1])

L
§(@) < S+ @), a—u)+5 lo—ylB, forall 5. (1D
Using this, we obtain a simple majorizer after some algebra.

Proposition 2. Suppose f is convex and Vf is Lipschitz
continuous with parameter L. If « < 1/L, then

CF(x) = % |z — (2% — aVf(2*)) Hz + A Py(2)

+ £t = S IV a2
is a majorizer for C(-) at z*.

If we set * to be a minimizer of C*(-), then C(z*) <
C(z*). However, to minimize C*(-), we essentially need to
solve (4), for which a numerical procedure is not readily
available. Nevertheless, if C*(2) < C*(x*) for some %, then
C(2) < C(«*). In the following, we show that such a # can
be found with a simple update rule.

B. Majorizing the Proposed Penalty
The condition C*(3) < C¥(z¥) is equivalent to
Dgw(3;2) < Dgw(a*;2) for z = 2 — aVf(z¥), and
B8 = a \. Observe now that
Dsw (l2l;12]) = Ds,w (o] €<% 2) < Dgw (w;2). (13)
for all =, z in C™. This suggests that, instead of minimizing

Dg w(z;z), we can consider

in D i 12]). 14
in Dpw(3]z]) (14)

On R%, Dgw(-;|z|) is simply a quadratic function. This
has the following consequence.

Proposition 3. If 7+ /5 W is positive definite, then Dg y (-; 2)
has a unique minimizer.

Proof. The problem in (14) can be expressed as

min %xT (I+BW)z —(|z| + 51, z). (15)

mERi
If I 4+ BW is positive definite, then the cost function in (15)
is strictly convex, and (15) has a unique solution, z* € R’}.
Suppose now that, for some z,

Dg w(z* el47, z) > D w(z, 2). (16)

We then have by (13) that Dg w (z*, |2|) > Daw(|z],|2]).
By the uniqueness of the solution of (15), we conclude that
x* = |z|. Now, if e74% # e/4%, then Dg (|z]e/“%,2) <
Dg w(z, z). Consequently,

Dpw(x*ei“? 2) = Daw(|x|e?“%, 2) < Dgw(z,2), (17)

contradicting (16). Thus, e/4? = e/4# and x = |z|e/4* =
x* e74#, which implies the uniqueness claim. O

Prop. 3 extends the range implied by Prop. 1 over which
T\,w is well-defined. However, it does not imply strict con-
vexity of Dg w(-;2), as Prop. 1 does.

The problem in (14) is a constrained convex minimization
problem. Thus, descent on (14) can be achieved by applying
any finite number of iterations of the projected gradient
algorithm (PGA) [15]. This observation leads to the following
proposition.

Proposition 4. Suppose I+ W is positive semi-definite with
spectral norm o; f is convex, V f is Lipschitz continuous with
parameter L; and o < 1/L. Let z = ¥ —a V f(2*), and Py ()
denote the projection operator onto R’} . Let S : R* — R"
denote the operator that maps x to  where,

=P, (m—n {(I—f—ﬂW)x%—ﬂl— |z\])
Finally, let S™ denote S iterated m times. If < 2/0, then
for any m > 1, and C as in (9), we have
C’(Sm(|xk\) ejéz) < C’(zk).
Further, if equality holds in (19), then,
(i) 2% is a stationary point of C(-), i.e., 0 is in the proximal
subdifferential [9] of C(-) ,
(i) ¥ = S™(|z*])e’4*, ie., 2¥ is a fixed point of the
iterations.

(18)

19)

Proof. Applying S corresponds to one iteration of PGA on
(14). Specifically, the correction term in (18) coincides with
VDg w(z,|z]). It follows by the properties of Py that

(x — S(z),z —nVDgw(z,|z|) — S(x)) <O0. (20)

After rearranging this inequality, and invoking (11) with L =
o, one obtains that if z € R}, then

Dgw (,]2]) = Dgw (S(2), |2])
> (% - %) le=s@]; e

The assumption no < 2, implies that the rhs is non-
negative. Repeatedly invoking this inequality, we obtain
Dgw (S™(|2*)),|2]) < Dgw(|z"],]2]). By (13), we then
have Dg w (S™(|2*|) €74%; 2) < Dpg w(x¥; z), which implies
(19).

Suppose now equality holds in (19). This implies that
Dys.w (8™ (j2*)); 2]) = Dy, (1a¥]; 2. But by (21), this is
possible only if S(|z*|) = |*|. This in turn implies

2¥| — 2| + B1 + Wz € =N, (|2")), (22)

where N, (|z*|) is the normal cone [17] of R" at |z*|. (22)
coincides with the optimality condition for |z%| for (14).
It then follows from the train of inequalities in (13) that
z* = S™(|2%]) /4% minimizes Dg w(-;z). But C(z*) =
C(2%) implies C*(x*¥) < C¥(x*), which is equivalent to
Dgw(z*;2) < Dgw(a¥;2). Therefore, z* also minimizes
Dgw(-;2). Thus

0€z®— 2+ BoPy(z"), (23)

where 0Py (z*) is the proximal subdifferential of Py [9].
Plugging in z = 2% — a Vf(2*) and 8 = a ), we obtain,

0 € Vf(2®) + 1Py (). (24)
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Fig. 2. Spectrograms of (a) the original signal, and (b) the reverberant and
noisy observation (SNR = 5 dB) used in the experiment.

Thus, 2 is a stationary point of C (+), as claimed in (i).
Observe now that if ¥ minimizes Dgw (+;2), then we
must have e/4* = e/4*". Therefore, v* = S(|2*|)|e’4* =

; k . . ..
|z¥| e74*" = ¥, as claimed in (ii). O

In view of Prop. 4, Algorithm 1 achieves descent for (9).

Algorithm 1 A Descent Algorithm for (9) — See Prop. 4

I Seta<1/L, B+ aln< 2/U(I+BW), initialize x
2: repeat

33 z+x—aVf(x)
4 x|z

5. for K iterations do
6

7

8

9:

T P+(x—n[(l+ﬁW)x+61 - |z|])
end for
Tzl F
until convergence

IV. DEMONSTRATION OF THE PROPOSED
PENALTY/ALGORITHM

We demonstrate the utility and behavior of the proposed
penalty and the algorithm on a dereverberation experiment.

The clean signal consists of a violin playing a chromatic
scale (see Fig. 2a). We observe a reverberant and noisy
version of this signal. The (known) reverberation is represented
in the short-time Fourier transform (STFT) domain by a
linear operator H [24]. Denoting the STFT coefficients of the
observations as gy, we consider a reconstruction formulation
for the STFT coefficients of the clean signal as

1
min o [ly = H x5 +P(x). (29)

N———
f(=)

Here P(x) is the penalty term, which is either the ¢; norm,

the SWAG penalty, or the proposed penalty.

We select the weight of the /; norm with a sweep search
so as to maximize the output SNR. For both SWAG and the
proposed penalty, we set A to be a quarter of the weight used
for the /1 penalty (which is sub-optimal). For these penalties,
we form groups over each slice along the frequency axis in
the STFT domain. For SWAG, we partition this slice with
960 coefficients into groups of size 15 and set v to 40. For
the proposed penalty, we set the weight matrix W to be a

(a) £1 Norm
(b) SWAG Penalty
= :
: g
z =3
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5 )
=] c
o [
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L g
L
0 0.5 1 15 2
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g, 2 [
>
2 ; 7 40
S ; 5
=1 e i
gt G g
I : o 1B 20 ‘
o o5 1 15 2 g LS
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Fig. 3. Spectrograms of the dereverbed signals using (a) the ¢; norm

(7.75 dB), (b) SWAG penalty from [4] (5.76 dB), (c) proposed penalty
(7.80 dB). (d) The first 50 coefficients from the first row of the Toeplitz
weight matrix W, used for defining Py (+).

symmetric Toeplitz matrix of size 960 x 960, where the first
column is as shown in Fig. 3d. The sequence is non-negative
and sums to 900, so that o(W') < 900. A Toeplitz W with non-
zeros close to the main diagonal allows to obtain a localized
effect in along the frequency axis.

The reconstructions obtained with these regularizers are
shown in Fig. 3. We remark that our primary purpose is not
to compare output SNRs, but to demonstrate the different
characteristics of the reconstructions.

For the /1 norm, a higher threshold leads to the suppression
of the weaker harmonics, along with noise. The proposed
penalty and SWAG avoid this dilemma by suppressing noise
around the strong harmonics, and preserving the weaker
harmonics, thanks to a lower A. Overall, this still leads to
an improvement in terms of SNR for the proposed penalty.
This aside, the spectrograms obtained with SWAG and the
proposed penalty show some differences. SWAG uses non-
overlapping groups. Also, since the boundaries of the groups
are not selected with respect to the positions of the harmonics,
we observe that the suppressed regions surrounding the har-
monics are not centered around the harmonics. In contrast,
thanks to the Toeplitz nature of W, the proposed penalty
essentially employs maximally overlapping groups. This leads
to a reconstruction where the harmonics lie at the center of an
otherwise suppressed region.

V. OUTLOOK

One aspect of interest, that is not addresed in this letter,
is the selection of the weight matrix W. While the proposed
penalty offers flexibility in the choice of the groups via the
introduction of W, it is not obvious what the ‘optimal’ weights
for a specific application should be. An alternative to an expert
selection is to learn W from data. We hope to investigate this
issue in future work.



[1]
[2]

[4]

[5]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

REFERENCES

H. H. Bauschke and P. L. Combettes. Convex analysis and monotone
operator theory in Hilbert spaces. Springer, 2011.

I. Bayram. Mixed-norms with overlapping groups as signal priors. In
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Proc. (ICASSP),
2011.

I. Bayram. On the convergence of the iterative shrinkage/thresholding
algorithm with a weakly convex penalty. IEEE Transactions on Signal
Processing, 64(6):1597-1608, March 2016.

I. Bayram and S. Bulek. A penalty function promoting sparsity
within and across groups. [EEE Transactions on Signal Processing,
65(16):4238 — 4251, June 2017.

A. Berman. Complete positivity. Linear Algebra and its Applications,
107:57 — 63, 1988.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3(1):1-
122, 2011.

P.-Y. Chen and 1. W. Selesnick. Group-sparse signal denoising: Non-
convex regularization, convex optimization. [EEE Transactions on
Signal Processing, 62(13):3464-3478, July 2014.

P-Y. Chen and I. W. Selesnick. Translation-invariant shrink-
age/thresholding of group sparse signals. Signal Processing, 94:476—
489, January 2014.

F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth
Analysis and Control Theory. Springer, 1998.

P. L. Combettes and J.-C. Pesquet. A proximal decomposition method
for solving convex variational inverse problems. Inverse Problems,
24(6):065014, 2008.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal
processing. In H. H. Bauschke, R. S. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms
for Inverse Problems in Science and Engineering. Springer, New York,
2011.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-
backward splitting. SIAM Journal on Multiscale Modelling and Simu-
lation, 4(4):1168-1200, November 2005.

M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak.
Majorization-minimization algorithms for wavelet-based image restora-
tion. IEEE Trans. Image Proc., 16(12):2980-2991, December 2007.
M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-
based image restoration. I[EEE Trans. Image Proc., 12(8):906-916,
August 2003.

A. A. Goldstein. Convex programming in Hilbert space. Bull. Amer:
Math. Soc., 70(5):709-710, 1964.

LJ. Gray and D.G. Wilson. Nonnegative factorization of positive
semidefinite nonnegative matrices. Linear Algebra and its Applications,
31:119 — 127, 1980.

J.-B. Hiriart-Urruty and C. Lemaréchal.
Analysis. Springer, 2004.

D. R. Hunter and K. Lange. A tutorial on MM algorithms. Amer. Statist.,
58(1):30-37, February 2004.

L. Jacob, G. Obozinsky, and J. P. Vert. Group lasso with overlap and
graph lasso. In Proc. Int. Conf. Machine Learning (ICML), 2009.

M. Kowalski. Sparse regression using mixed norms. Applied and
Computational Harmonic Analysis, 27(3):303-324, November 2009.
M. Kowalski and B. Torrésani. Sparsity and persistence: Mixed norms
provide simple signal models with dependent coefficients. Signal, Image
and Video Processing, 3(3):251-264, 2009.

J. M. Ortega and W. C. Rheinboldt. [terative Solution of Nonlinear
Equations in Several Variables. Academic Press, 1970.

N. Rao, R. Nowak, C. Cox, and T. Rogers. Classification with the sparse
group lasso. IEEE Transactions on Signal Processing, 64(2):448—463,
January 2016.

J. P. Reilly, M. Wilbur, M. Seibert, and N. Ahmadvand. The complex
subband decomposition and its application to the decimation of large
adaptive filtering problems. IEEE Transactions on Signal Processing,
50(11):2730-2743, Nov 2002.

I. W. Selesnick and I. Bayram. Sparse signal estimation by maximally
sparse convex optimization. IEEE Transactions on Signal Processing,
62(5):1078-1092, March 2014.

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group
lasso. Journal of Computational and Graphical Statistics, 22(2):231-
245, 2013.

J.-P. Vial. Strong and weak convexity of sets and functions. Mathematics
of Operations Research, 8:231-259, May 1983.

Fundamentals of Convex

[28] M. Yuan and Y. Lin. Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society B, 68(1):49—
67, 2006.

[29] Y. Zhou, R. Jin, and S. Hoi. Exclusive lasso for multi-task feature

selection. In Proc. Int. Conf. Artificial Intelligence and Statististics,
2010.



