
1

Proximal Mappings Involving Almost Structured
Matrices

İlker Bayram

Abstract—We consider a minimization problem where the cost
function consists of the sum of a quadratic data fidelity term
and a penalty term. The quadratic involves a matrix H that
can be embedded into a larger matrix H̃ where multiplication
with the inverse of I + αH̃T H̃ can be efficiently performed.
We discuss how to take advantage of this property when the
Douglas-Rachford algorithm is utilized.

I. INTRODUCTION

Consider a minimization problem containing a quadratic
data fidelity term and a penalty term as,

min
x∈Rn

1

2
‖y −H x‖22 + P (x), (P1)

where H is an m× n matrix, y ∈ Rm is a given data vector,
‖·‖2 denotes the `2 norm on Rm and P (·) is a convex penalty
function (or regularizer). When the proximals (see Defn. 1) of
the data fidelity term and the penalty term are easy to evaluate,
this problem can be efficiently solved using the Douglas-
Rachford algorithm [5]. The proximal of the quadratic data
term requires multiplication with (I + αHT H)−1, where ‘I’
denotes the identity matrix and ‘α’ is a positive parameter
(see Ex. 1 below). If H is a structured matrix like a circulant
matrix, or if it is sparse etc., then this multiplication can be
performed in a computationally efficient manner. In this letter,
we consider the case where H does not enjoy such a property
but by adding rows and/or columns it can be completed to
a larger H̃ for which (I + α H̃T H̃)−1 is computationally
feasible to compute.

A primary case of interest is when H is associated with
linear convolution. In fact, if H has a Toeplitz structure deter-
mined by a filter h, then multiplication with H or I + αHTH
can be realized using fast Fourier transforms (fft) via zero
padding (see e.g. Sec. 8.7.2 of [11]). Therefore, handling
such matrices is easy for forward-backward type algorithms
which only employ multiplication with H or HT [6]. However,
the Douglas-Rachford algorithm requires multiplication with
(I + αHT H)−1 which requires convolution with an inverse
filter and this may not be easily realized with fft’s (see e.g.
[10, 1]) because the inverse filter might be infinite impulse
response. Nevertheless, if h is short, I + αHT H will be
banded and can be inverted efficiently (see e.g. the discussion
on banded systems in [8]). In a context similar to this letter’s,
this point has been noted and exploited in [14] to accelerate

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

İ. Bayram is with the Dept. of Electronics and Telecommunications Eng.,
Istanbul Technical University, Istanbul, Turkey. E-mail : ibayram@itu.edu.tr.
This research is supported by TÜBİTAK (Project No : 113E511).

the convergence of a majorization-minimization algorithm.
Unfortunately, when h has many non-zero coefficients, it is not
computationally feasible to invert I + αHT H . Nevertheless,
H can be completed to a larger circulant H̃ [16], for which
multiplication with (I+α H̃T H̃)−1 can be realized efficiently
via fft’s.

Another example is when y is obtained by irregularly
sampling a noisy observation of a signal obtained from a
dictionary [13], where the dictionary atoms are taken from
a frame with a synthesis operator that can be implemented
efficiently [4]. In that case, the matrix H whose columns
hold the dictionary atoms is obtained by irregularly sampling
the rows and columns of the frame synthesis operator H̃ and
it might be computationally more desirable to multiply with
(I + α H̃T H̃)−1 instead of (I + αHT H)−1.
Related Work

The problem introduced above has been considered in the
context of handling boundary conditions in image deconvo-
lution [10, 1, 15, 12]. Specifically, in [15, 12], the authors
assume that pixels outside a specified boundary do not affect
the observed image y. This in turn leads to a quadratic data
term as in (P1) where H can be completed to a circulant
matrix by appending rows, i.e., H̃ =

[
HT GT

]T
for some

G. Noting that HT H = H̃T H̃ −GT G, it is then possible to
resort to the matrix inversion lemma to write (see [15, 12] for
the slightly different context/problem)

(I + αHT H)−1 = A−1 + αA−1GT B−1GA−1, (1)

where A = (I + α H̃T H̃) and B = (I − αGA−1GT ).
Multiplication with B−1 can be efficiently implemented if
G has a small number of rows since then B will have a
small size. However, multiplication with B−1 may be as hard
to realize as (I + αHT H)−1 when G has many rows. An
alternative is presented in [10, 1] where the authors consider
a data fidelity term of the form 1

2‖y − T H̃ x‖22, where T

is a wide diagonal matrix such that T H̃ = H . Note that
inverting

(
I +(T H̃)T (T H̃)

)
is not computationally feasible

either. Therefore, this transformation is not suitable for a direct
implementation of the Douglas-Rachford algorithm. In order
to avoid computing this inverse, the authors employ variable
splitting and use the alternating direction method of multipliers
(ADMM) algorithm [7, 3]. However, as will be shown in the
sequel, it is also possible to directly employ the Douglas-
Rachford algorithm without variable splitting.
Proposed Approach

We propose to consider a modified problem equivalent to
(P1) which can be written as the sum of two terms with



2

simple proximal mappings, thus facilitating the realization of
Douglas-Rachford iterations. The equivalent problem allows to
append both rows and columns to H to reach H̃ (see Section V
for the description of a problem which requires that). Thus,
the considered problem is slightly more general than those in
[10, 1, 15, 12], which are interested in appending rows to H .

Outline

We start with a brief discusson on the Douglas-Rachford
algorithm in Section II. The discussion of the equivalent
problem and the resulting Douglas-Rachford iterations are
discussed in Section III. In Section IV we consider two special
cases where we need to append only columns or only rows
to H . A batch of experiments with varying problem sizes is
presented in Section V. Section VI is the conclusion.

II. THE DOUGLAS-RACHFORD ALGORITHM

Before we state the algorithm, let us recall the definition of
a proximity operator.

Definition 1. The proximity operator (proximal mapping) of a
convex function f : Rn → R is denoted by Jαf and is defined
for α > 0 as

Jαf (x
′) = argmin

x

1

2
‖x′ − x‖22 + α f(x). (2)

We refer to [5] for a table of proximal mappings that are
relevant from a signal processing viewpoint. An example of
interest is the following.

Example 1. For f(x) =
1

2
‖y−H x‖22, the proximity operator

is given as,

Jαf (x
′) = argmin

x

1

2
‖x′ − x‖22 +

α

2
‖y −H x‖22 (3a)

= (I + αHT H)−1(x′ + αHT y). (3b)

For a minimization problem of the form

min
x
f(x) + g(x), (4)

where both f and g are convex, the Douglas-Rachford itera-
tions consist of

xn+1 =
(
λ I + (1− λ)

(
2Jαg − I

) (
2Jαf − I

))
xn, (5)

for λ ∈ (0, 1). Regardless of the value of α, the sequence xn

converges to a point x∗ such that Jαf (x∗) minimizes f + g.
We refer to [9, 7, 2] for a study of convergence. For (P1),
pseudocode for the Douglas-Rachford algorithm is presented
in Algorithm 1. The ‘repeat’ loop in this algorithm yields an
approximate x∗ and the last step is the final proximal operation
Jαf (x

∗) mentioned above.

III. APPENDING ROWS AND COLUMNS TO H

Suppose H is m×n and it can be embedded into H̃ which
is m′ × n′, with m′ ≥ m, n′ ≥ n. In general, the rows and
columns of H̃ can be sampled in any order but for simplicity,
we assume that H and H̃ are related as,

H̃ =

[
H H1

H2 H3

]
, (6)

Algorithm 1 Douglas-Rachford Algorithm for (P1)
1: Initialize x ∈ Rn
2: repeat
3: x̃← 2(I + αHT H)−1 (x+ αHT y)− x
4: x← λx+ (1− λ)

(
2 JαP (x̃)− x̃

)
5: until some convergence criterion is met
6: x∗ ← (I + αHT H)−1 x

for some matrices H1, H2, H3. If we directly apply the
Douglas-Rachford algoritm to problem (P1), we cannot em-
ploy the operator (I + α H̃T H̃)−1 which is assumed to be
easily realizable. Our idea is to first define an equivalent
problem and employ the Douglas-Rachford algorithm on this
modified problem.

A. A Modified Problem

In the setting described above, consider the problem,

min
x,z,t

1

2

∥∥∥∥t− H̃ [
x
z

]∥∥∥∥2
2

+ P (x),

s.t.

{
tk = yk, for 1 ≤ k ≤ m,
z = 0.

(P2)

where (x, z, t) ∈ Rn×Rn′−n×Rm′
and tk, yk denote the kth

entry of t, y respectively. The seemingly vacuous constraint
z = 0 is in fact necessary for our stated purpose of avoiding
(I + αHT H)−1 and using (I + α H̃T H̃)−1 instead. The
Douglas-Rachford iterations will need to keep track of the
variables z, which will assume non-zero values throughout
the iterations and converge to zero only in the limit.

The two problems (P1) and (P2) are equivalent in the
following sense.

Proposition 1. x∗ ∈ Rn is a solution of (P1) if and only if
(x∗, z∗, t∗) ∈ Rn+(n′−n)+m′

is a solution of (P2) for some
z∗ ∈ Rn′−n, t∗ ∈ Rm′

.

Proof. Due to the constraints on (P2), we can restate it as,

min
x,t̃

{
C2(x, t̃) =

1

2

∥∥∥∥[yt̃
]
− H̃

[
x
0

]∥∥∥∥2
2

+ P (x)

}
, (7)

where (x, t̃) ∈ Rn × R(m′−m). Using (6), we can write,

C2(x, t̃) =
1

2
‖y −H x‖22 + P (x)︸ ︷︷ ︸

C1(x)

+
1

2
‖t̃−H2 x‖22. (8)

Therefore C2(x, t̃) ≥ C1(x) for all (x, t̃).
Suppose now that x∗ solves (P1). This is equivalent to

C1(x
∗) ≤ C1(x) for all x. Now let t̃∗ = H2 x

∗. We have,

C2(x
∗, t̃∗) = C1(x

∗) ≤ C1(x) ≤ C2(x, t̃) (9)

for any (x, t̃). Thus
(
x∗, 0,

[
y
t̃∗

])
solves (P2).

For the converse, suppose
(
x∗, 0,

[
y
t̃∗

])
solves (P2), but x∗

does not minimize (P1). Then there exists some x′ such that
C1(x

′) < C1(x
∗). But then for t̃′ = H2 x

′, we would have

C2(x
′, t̃′) = C1(x

′) < C1(x
∗) ≤ C2(x

∗, t̃∗), (10)



3

contradicting the assumption that
(
x∗, 0,

[
y
t̃∗

])
solves (P2).

B. Douglas-Rachford Iterations for (P2)

For the Douglas-Rachford iterations, we split (P2) as,

min
(x,z,t)

1

2

∥∥∥∥t− H̃ [
x
z

]∥∥∥∥2
2︸ ︷︷ ︸

f(x,t,z)

+P (x) + iC(t, z)︸ ︷︷ ︸
g(x,t,z)

(11)

where iC(t, z) is a characteristic function enforcing the con-
straints, defined as

iC(t, z) =

0, if

{
tk = yk, for 1 ≤ k ≤ m,
z = 0,

∞, otherwise.

Given f and g as in (11), we need expressions for their
proximals. First, note that

Jαf (x
′, z′, t′) = arg min

(x,z,t)

1

2
‖x− x′‖22 +

1

2
‖z − z′‖22

+
1

2
‖t− t′‖22 +

α

2

∥∥∥∥t− H̃ [xz
]∥∥∥∥2

2

. (12)

For (x̂, ẑ, t̂) = Jαf (x
′, z′, t′), we find, by the optimality

conditions that[
(1 + α) I −α H̃
−α H̃T I + α H̃T H̃

] [
t̂
û

]
=

[
t′

u′

]
, (13)

where

û =

[
x̂
ẑ

]
, u′ =

[
x′

z′

]
. (14)

Solving (13), we find,

û =

(
I +

α

1 + α
H̃T H̃

)−1 (
u′ +

α

1 + α
H̃T t′

)
(15a)

t̂ =
1

1 + α

(
t′ + α H̃ û

)
. (15b)

We also note that if (x̂, ẑ, t̂) = Jαg(x
′, z′, t′), then

x̂ = JαP (x
′), (16a)

ẑ = 0, (16b)

t̂k =

{
yk if 1 ≤ k ≤ m,
t′k if m+ 1 ≤ k ≤ m′.

(16c)

Using these expressions for the proximals, we can write down
the Douglas-Rachford iterations. After some rearrangements,
we obtain the iterations in Algorithm 2. Notice that Algo-
rithm 2 employs only the inverse of (I + β H̃T H̃).

IV. SPECIAL CASES

In order to obtain H̃ we may need to append only rows
or only columns to H . In those cases, Algorithm 2 can be
simplified.

Algorithm 2 Douglas-Rachford Alg. for (11), Solving (P2)

1: Initialize x ∈ Rn, t ∈ Rm′
, z ∈ R(n′−n), β ← α

1 + α
2: repeat

3:

[
x̃
z̃

]
←
(
I + β H̃T H̃

)−1 ([x
z

]
+ β H̃T t

)
4: t̃← 1− α

1 + α
t+ 2β H̃

[
x̃
z̃

]
5: x← x+ 2(1− λ)

(
JαP (2x̃− x)− x̃

)
6: z ← z − 2(1− λ) z̃

7: tk ←

{
λ tk + (1− λ) (2yk − t̃k), for 1 ≤ k ≤ m,
λ tk + (1− λ) t̃k, for m+ 1 ≤ k ≤ m′

8: until some convergence criterion is met

9:

[
x∗

z∗

]
←
(
I + β H̃T H̃

)−1 ([x
z

]
+ β H̃T t

)
A. Appending Columns to H

Suppose H is m×n and H̃ is m×n′ with n′ > n. Assume
for simplicity that H can be embedded into H̃ as

H̃ =
[
H H1

]
(17)

for an m× (n′ − n) matrix H1. Consider the problem

min
x,z

1

2

∥∥∥∥y − H̃ [
x
z

]∥∥∥∥2
2

+ P (x), s.t. z = 0, (P3)

where (x, z) ∈ Rn × Rn′−n. The problem (P3) is equivalent
to (P1) in the following sense.

Proposition 2. x∗ ∈ Rn is a solution of (P1) if and only if
(x∗, 0) ∈ Rn × R(n′−n) is a solution of (P3).

Now let

f(x, z) =
1

2

∥∥∥∥y − H̃ [
x
z

]∥∥∥∥2
2

, (18a)

g(x, z) =

{
P (x), if z = 0,

∞, if z 6= 0.
(18b)

Then, for (x̂, ẑ) = Jαf (x
′, z′), we have,[

x̂
ẑ

]
= (I + α H̃T H̃)−1

([
x′

z′

]
+ α H̃T y

)
. (19)

Also, if (x̂, ẑ) = Jαg(x
′, z′), then, x̂ = JαP (x

′), and ẑ = 0.
The resulting Douglas-Rachford iterations are given in Al-

gorithm 3. Note that these iterations are much simpler than
those in Algorithm 2 since we do not need to replace the
constant y with constrained variables.
B. Appending Rows to H

Suppose now that H is m× n, H̃ is m′ × n with m′ > m

and the two matrices are related as, H̃ =
[
HT HT

1

]T
, for an

(m′−m)×n matrix H1. An algorithm for this special case can
be obtained by removing the variable z from the discussion
in Section III. Consequently the problem we consider is

min
x∈Rn, t∈Rm′

1

2

∥∥∥t− H̃ x
∥∥∥2
2
+ P (x),

s.t. tk = yk, for 1 ≤ k ≤ m. (P4)



4

Algorithm 3 Douglas-Rachford Algorithm for (P3)

1: Initialize x ∈ Rn, z ∈ R(n′−n).
2: repeat

3:

[
x̃
z̃

]
← 2

(
I + α H̃T H̃

)−1 ([x
z

]
+ α H̃T y

)
−
[
x
z

]
4: x← λx+ (1− λ)

(
2JαP (x̃)− x̃

)
5: z ← λ z − (1− λ) z̃
6: until some convergence criterion is met

7:

[
x∗

z∗

]
←
(
I + α H̃T H̃

)−1 ([x
z

]
+ α H̃T y

)
An algorithm for solving this problem can be obtained by
removing z and z̃ from Algorithm 2. The resulting pseudocode
is given in Algorithm 4.

Algorithm 4 Douglas-Rachford Algorithm for (P4)

1: Initialize x ∈ Rn, t ∈ Rm′
, set β ← α/(1 + α)

2: repeat

3: x̃←
(
I + β H̃T H̃

)−1 (
x+ β H̃T t

)
4: t̃← 1− α

1 + α
t+ 2β H̃ x̃

5: x← x+ 2(1− λ)
(
JαP (2x̃− x)− x̃

)
6: tk ←

{
λ tk + (1− λ) (2yk − t̃k), for 1 ≤ k ≤ m,
λ tk + (1− λ) t̃k, for m+ 1 ≤ k ≤ m′

7: until some convergence criterion is met

8: x∗ ←
(
I + β H̃T H̃

)−1 (
x+ β H̃T t

)
V. EXPERIMENTS

In order to assess the convergence speed of the proposed
modification, we performed tests involving problems of vary-
ing sizes. Our purpose here is to not to provide theoretical lim-
its but to demonstrate that the proposed modification can be ef-
fective especially for large problems. For the experiments, we
reach H̃ by appending rows and columns to H . Therefore this
problem falls out of the immediate scope of the discussion in
[10, 1, 15, 12]. Matlab code for these experiments can be found
at “http://web.itu.edu.tr/ibayram/Structured/”.

We took H as N ×N Toeplitz matrices where N = k · 104
for k = 1, 2, . . . , 10. The matrices H are associated with
a causal filter h (so that H is lower-triangular) of length
Kh = 2000. The filter h is produced randomly by sampling a
length-Kh random vector with independent entries which are
uniformly distributed on [0, 1] and multiplying the resulting
vector with an exponentially decaying mask. Note that H can
be embedded in a circulant (N +Kh − 1) × (N +Kh − 1)
matrix H̃ . We took x to be a random sparse vector (95%
zero, non-zeros are obtained by sampling from a standard
Gaussian distribution) and produced y as, y = Hx+u, where
u denotes Gaussian noise with variance σ2, chosen such that
SNR = 10 dB. We took P (x) = τ‖x‖1 for τ = 3σ, so that the
proximal of P , namely JαP , is a soft-threshold with threshold
equal to α τ . We also set the parameters of the algorithm
as α = 0.1, λ = 0.1, which lead to a fair convergence

2 4 6 8 10

x 10
4

0

5

10

Problem Size

R
un

ni
ng

 T
im

e 
(s

ec
)

 

 

Alg−1 (PCG)
Alg−2 (Proposed)

Fig. 1. Running times for the regular Douglas-Rachford algorithm (Algo-
rithm 1) for 20 iterations and Algorithm 2 for 400 iterations.

Optimality Plots
(a) Alg. 1 (PCG)

−1 0 1
−τ

τ

x*

H
T
(y

 −
 H

x*
)

(b) Alg. 2 (Proposed)

−1 0 1
−τ

τ

x*

H
T
(y

 −
 H

x*
)

Fig. 2. Optimality plots for a problem of size 105, showing HT (y−Hx∗)
vs. x∗, where x∗ is the solution obtained by (a) Algorithm 1, (b) Algorithm 2.

behavior. In this setting, we ran the regular Douglas-Rachford
iterations (Algorithm 1) and Algorithm 2. Due to the size of
the matrices, the operation (I + αHT H)−1 in Algorithm 1
is realized using preconditioned conjugate gradients (PCG)
[17]. For preconditioning, we used an N × N circulant M
associated with the filter δ(n)+αah(n), where ah(n) denotes
the autocorrelation function of the filter h (see e.g. [16] or
Lecture 40 of [17]). Note that M can be inverted efficiently
using fft’s. For Algorithm 2, we realized multiplication with
(I + αH̃T H̃)−1 also using fft’s (observe however that this
matrix is larger in size compared to M ). In our experiments,
we observed that Algorithm 2 requires more iterations to
approximately converge to the optimal solution, due probably
to the increased number of variables. For this reason, we
ran Algorithm 1 for 20 iterations and Algorithm 2 for 400
iterations. For these choices, the algorithms approximately
converged. We also made sure that 400 iterations Algorithm 2
returns a lower cost than 20 iterations of Algorithm 1. The
running times for a regular PC are shown in Fig. 1.

In order to check whether the algorithms converged, we
also viewed the optimality conditions. For our problem, x∗

is a solution if and only if HT (y −Hx∗) ∈ τ sign(x∗). For
H of size 105 × 105, the optimality plots showing x∗ vs.
HT (y −H x∗) for the two algorithms are provided in Fig. 2.
We observe that the solutions obtained by both algorithms
approximately satisfy the optimality conditions.

To conclude, these experiments demonstrate that the pro-
posed modified problem and the resulting iterations can lead
to a considerable reduction in the running time.

VI. CONCLUSION

We considered an implementation detail pertaining to al-
gorithms involving proximals of quadratics. Efficient realiza-
tion of this proximal can be important especially for large
problems, which are of growing interest in signal processing.
Although we specifically considered the Douglas-Rachford
algorithm, the proposed approach can be useful for other
algorithms that employ proximals such as ADMM, forward-
backward or majorization-minimization algorithms.



5

REFERENCES

[1] M. S. C. Almeida and M. A. T. Figueiredo. Deconvolving
images with unknown boundaries using the alternating
direction method of multipliers. IEEE Trans. Image
Proc., 22(8):3074–3086, May 2013.

[2] H. H. Bauschke and P. L. Combettes. Convex anal-
ysis and monotone operator theory in Hilbert spaces.
Springer, 2011.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

[4] O. Christensen. An Introduction to Frames and Riesz
Bases. Birkhäuser, 2003.

[5] P. L. Combettes and J.-C. Pesquet. Proximal splitting
methods in signal processing. In H. H. Bauschke,
R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke,
and H. Wolkowicz, editors, Fixed-Point Algorithms for
Inverse Problems in Science and Engineering. Springer,
New York, 2011.

[6] P. L. Combettes and V. R. Wajs. Signal recovery by
proximal forward-backward splitting. SIAM J. Multiscale
Model. Simul., 4(4):1168–1200, November 2005.

[7] J. Eckstein and D. P. Bertsekas. On the Douglas-
Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Mathematical
Programming, 55(3):293–318, 1992.

[8] G. H. Golub and C. F. van Loan. Matrix Computations.
The Johns Hopkins University Press, 1996.

[9] P. L. Lions and B. Mercier. Splitting algorithms for the
sum of two nonlinear operators. SIAM J. Numer. Anal.,
16(6):964–979, 1979.

[10] A. Matakos, S. Ramani, and J. A. Fessler. Accelerated
edge-preserving image restoration without boundary ar-
tifacts. IEEE Trans. Image Proc., 22(5):2019–2029, May
2013.

[11] A. V. Oppenheim and R. W. Schafer. Discrete-Time
Signal Processing. Pearson, third edition, 2010.

[12] S. J. Reeves. Fast image restoration without boundary
artifacts. IEEE Trans. Image Proc., 14(10):1448 – 1453,
October 2005.

[13] R. Rubinstein, A.M. Bruckstein, and M. Elad. Dictio-
naries for sparse representation modeling. Proc. IEEE,
98(6):1045–1057, June 2010.

[14] I. W. Selesnick, H. L. Graber, D. S. Pfeil, and R. L. Bar-
bour. Simultaneous low-pass filtering and total variation
denoising. IEEE Trans. Signal Processing, 62(5):1109–
1124, March 2014.

[15] M. Sorel. Removing boundary artifacts for real-time
iterated shrinkage deconvolution. IEEE Trans. Image
Proc., 21(4):2329 – 2334, April 2012.

[16] G. Strang. A proposal for Toeplitz matrix calculations.
Studies in Applied Mathematics, 74(2):171–176, April
1986.

[17] L. N. Trefethen and D. Bau III. Numerical Linear
Algebra. SIAM, 1997.


