EHB 252E - Signals and Systems

Instructor	Iliker Bayram EEB 1103 ibayram@itu.edu.tr
Class Meets	13.30-16.30, Thursday EEB 5204
Office Hours :	14.00-16.00, Tuesday
Textbook	A. V. Oppenheim, A. S. Willsky, S. H. Nawab, 'Signals and Systems', $2^{\text {nd }}$ Edition, Prentice Hall.
Grading :	Homeworks and Quizzes (10\%), 2 Midterms (25\% each), Final (40\%)

Tentative Course Outline

- Introduction to Signals and Systems

Basic discrete and continuous-time signals and their properties, transformations of the independent variable, basic system properties

- Linear Time-Invariant Systems

Discrete and continuous time LTI systems, convolution sum and integral, properties of LTI systems, LTI systems defined by differential and difference equations

- Fourier Series

Representation of continuous and discrete-time signals using Fourier series, properties of Fourier series, LTI systems and Fourier series

- The Continuous-Time Fourier Transform
- The Discrete-Time Fourier Transform
- Frequency Domain Characterization of Systems

Magnitude-phase representations, ideal frequency selective filters

- Sampling

A/D, D / A conversion, aliasing, discrete-time processing of continuous-time signals

- The z-Transform

The z transform, region of convergence, inverse z-transform, properties of the z-transform, characterizing LTI systems using the z-transform

- The Laplace Transform

The Laplace transform, region of convergence, inverse Laplace transform, properties of the Laplace transform, characterizing LTI systems using the Laplace transform

EHB 252E - Homework 1

Due 23.02.2012

1. Let S_{1}, S_{2} be continous-time systems whose input-output relations are as specified below.

$$
x(t) \longrightarrow S_{2} \longrightarrow x(t-1)
$$

Also, let $f(t)$ be a signal described as

$$
f(t)= \begin{cases}(t-2)^{2}, & \text { for } 1 \leq t<2 \\ 2-t, & \text { for } 2 \leq t \leq 3 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Sketch $f(t)$.
(b) Consider the system below.

For $x(t)=f(t)$, determine and sketch $y(t)$.
(c) Consider the system below.

For $x(t)=f(t)$, determine and sketch $z(t)$.
2. Let S be a time-invariant system that maps a discrete-time signal x to a discrete-time signal y. Suppose we know that

$$
y(0)=3 x(0)-2 x(-1)+x(-2)
$$

(a) Determine an expression for $y(1)$ in terms of the samples of x.
(b) Determine an expression for $y(n)$ in terms of the samples of x.
(c) Is S linear or not? Please (briefly) explain your answer. If information is insufficient, explain why you think so.
3. We repeat the question above for a continuous-time system. This time, let S be a time-invariant system that maps a continuous-time signal x to a continuous-time signal y. Suppose we know that

$$
y(0)=\int_{-1}^{2} x(t) f(t) d t
$$

where $f(t)$ is a continuous-time signal.
(a) Determine an expression for $y(1)$ in terms of x and f.
(b) Determine an expression for $y(t)$ in terms of x and f.
(c) Is S linear or not? Please (briefly) explain your answer. If information is insufficient, explain why you think so.
4. Let x and y be discrete-time signals defined as, $x(n)=e^{-n^{2}} \sin (n), y(n)=e^{-n^{2}} \cos (n)$. Also let $z=x * y$. Compute $\sum_{n=-\infty}^{\infty} z(n)$.
Hint : Try to express $\sum_{n} z(n)$ in terms of $\sum_{n} x(n)$ and $\sum_{n} y(n)$.
5. (a) Let x and y be discrete-time signals, described as $x(n)=u(n), y(n)=e^{-n} u(n)$. Also, let $z(n)=x(n) * y(n)$. Compute $z(n)$.
(b) Let x and y be continuous-time signals described as $x(t)=u(t)-u(t-3), y(t)=u(t)-u(t-1)$. Also, let $z(t)=x(t) * y(t)$. Compute and sketch $z(t)$.

EHB 252 E - HWI solutions
(1) (a)

$$
\begin{aligned}
& (c) \times \rightarrow S_{2} \xrightarrow{z_{1}} / S_{1} \rightarrow z \\
& z_{1}(t)=x(t-1) \\
& z(t)=z_{1}(t / 3)=x(t / 3-1) \\
& =y(t-2))
\end{aligned}
$$

(b) $x \rightarrow s_{1} \xrightarrow{y_{1}} s_{2} \rightarrow y$

$$
\begin{aligned}
& y_{1}^{(t)}=x(t / 3) \\
& y(t)=y_{1}(t-1)=x\left(\frac{t-1}{3}\right)
\end{aligned}
$$

(2.) (a) Suppos we input $\tilde{x}(n)=x(n+1)$. Then the output $\tilde{y}(n)$ rotisfies $\tilde{y}(0)=3 \tilde{x}(0)-2 \tilde{x}(-1)+\tilde{x}(-2)=3 \times(1)-2 \times(0)+x(-1)(*)$
But, by tire-inveriance, we sould have $g(n)=y(n+1)$, so $\tilde{y}(0)=y(1)$, $0(t)$ is the Lesired expresision.
(b) Thio time input $\tilde{x}(n)=x(n+k)$. By the vame ay unent, we obtain, $\tilde{y}(-)=y(n+k)$ and, $\tilde{y}(0)=y(k)=3 \times(k)-2 \times(k-1)+x(k-2)$
(c) The expresion $f(n)=3 \times(n)-2 \times(n-1)+\times(n-2)$ is actually a convolution sum \Longrightarrow The yster is LTI.
(3) (o) Let $\tilde{x}(t)=x(t+1)$ Le the input and $\tilde{y}(t)$ the output.

E time-invariance $\tilde{y}_{2}(t)=y(t+1)$

$$
\begin{aligned}
& \text { E time-invariance } \tilde{y}_{2}^{(t)}=y(t+1) \\
& \tilde{y}(0)=y(1)=\int_{-1}^{2} \tilde{x}(t) f(t) d t=\int_{-1}^{2} x(t+1) f(t) d t
\end{aligned}
$$

(b) Similoly, let $\tilde{x}(t)=x(t+s)$ Le the input and $\tilde{y}(t)$ be the out, out $B y t-$; we hue $g(t)=y(t+s)$.

$$
\tilde{y}(0)=f(1)=\int_{-1}^{2} \tilde{x}(t) f(t) d t=\int_{-1}^{2} x(t+1) f(t) d t
$$

(a) If we define $h(t)=f(-t)$, we can wite $(f o r \quad z=-s)$

$$
\begin{aligned}
y(t)=\int_{-1}^{2} x(s+t) f(s) d s & =\int_{-2}^{1} x(t-z) f(-\tau) d \tau \\
& =\int_{-2}^{1} x(t-\tau) h(\tau) d \tau
\end{aligned}
$$

This is in convolution integral \Rightarrow goner is LTI.
(4.) We have $z(n)=\sum_{k} x(n-k) y(k)$ if we sum over n,

$$
\sum_{n=-\infty}^{\infty} z(n)=\sum_{n=-\infty}^{\infty} \sum_{h} x(n-h) y(h)=\sum_{h} y(h) \sum_{n=-\infty}^{\infty} x(n-k)
$$

Notice that $\sum_{n=-\infty}^{\infty} x(n-k)=\sum_{n=-\infty}^{\infty} x(n)$ for any value of k. $\operatorname{since} \times$ xis
1
0
Thus, $\sum_{n=-\infty}^{\infty} z(n)=\left[\sum_{n=-\infty}^{\infty} y(-)\right]\left[\sum_{n=-\infty}^{\infty} x(n)\right]=\left[\sum_{n} y(n)\right] \cdot 0=0$.
(5.) $(a) z(n)=\sum_{k=-\infty}^{\infty} u(n-k) e^{-k} \cdot u(k)$

Notice that $u(n-h) \cdot u(k)= \begin{cases}1 & \text { for } 0 \leq k \leq n . \\ 0 & \text { otherwise }\end{cases}$

$$
\Rightarrow \quad z(1)=\sum_{k=0}^{n} e^{-k}=\frac{e^{-(k+1)}-1}{e^{-1}-1}
$$

EHB 252E - Homework 2

Due 08.03.2012

1. Let $x_{1}(t)=u(t)-u(t-1), x_{2}(t)=u(t)-u(t-2), x_{3}(t)=e^{-2 t} u(t)$.
(a) Let $y_{1}=x_{1} * x_{1}$. Determine and sketch $y_{1}(t)$.
(b) Let $y_{2}=x_{1} * x_{2}$. Determine and sketch $y_{2}(t)$.
(c) Let $y_{3}=x_{1} * x_{3}$. Determine and sketch $y_{3}(t)$.
(d) Let $y_{4}=x_{3} * x_{3}$. Determine and sketch $y_{4}(t)$.
2. Consider a discrete-time system S desribed by the difference equation

$$
\begin{equation*}
y(n)-y(n-1)+\frac{1}{4} y(n-2)=x(n) \tag{1}
\end{equation*}
$$

and 'initial rest' conditions. In this question, we will derive the impulse response of this LTI system, by viewing it as a cascade of two first-order systems.
(a) Consider the LTI system S_{α} described by the difference equation $y(n)=\alpha y(n-1)+x(n)$ and initial rest conditions. Derive the impulse response of S_{a}. Notice that the impulse response will depend on the variable α.
(b) Consider the cascade system

Express the difference equation associated with this system.
(c) Determine α_{1}, α_{2}, so that the difference equation is equivalent to (??) above.
(d) Determine the impulse response of S.
3. Let S_{1} and S_{2} be LTI systems. Also, let S denote the cascade system below.

Suppose that

- the impulse response of S_{2} is $h_{2}(n)=\delta(n)-\frac{1}{2} \delta(n-1)$,
- the impulse response of S is $h(n)=2 \delta(n)+3 \delta(n-1)-\delta(n-3)$.

Determine $h_{1}(n)$, the impulse response of S_{1}.
4. Consider an LTI system whose input $x(t)$ and output $y(t)$ satisfy

$$
y(t)=\int_{-\infty}^{\infty} 3 x(\tau+2) f(2 t+2 \tau) d \tau
$$

where

$$
f(t)= \begin{cases}1 & \text { for } 1 \leq t \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Determine and sketch the impulse response of the system.
5. Let $x(t)=\cos (4 \pi t)+\sin (4 \pi t)$. Determine the Fourier series coefficients of $x(t)$. That is, find a_{k} so that

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j 2 \pi k t} .
$$

EHB2I2E-HW2 Solutions
(1.) (a) Notice

Let $\tilde{x},(z)=x,(-z)$

$$
\Rightarrow \text { Then, } \tilde{x}_{1}(\pi-t)=x_{1}(t-z)
$$

So, $x_{1}(t-z)$ (avofanction of $\left.z\right)$

$$
\Rightarrow s_{t}(z)=x_{1}(z) \cdot x_{1}(t-z)
$$

If $0 \leq t<1, \leq_{+}(2)$
if $1 \leq t<2$

Mat

$$
\begin{aligned}
& y(t)=\int_{-\infty}^{\infty} x,(z) x,(t-z) d \tau=\int_{t}(z) d z \\
&=\int_{0}^{1} 1 \cdot d \tau=t, \text { if } 0 \leq t<1 \\
& \int_{t-1}^{1} 1 \cdot d z=2-t, \text { if } 1 \leq t \leq 2 \\
& 0,1)^{y}
\end{aligned}
$$

(b) Similarly let $\tilde{x}_{2}(z)=x_{2}(-z)$ Then $\tilde{x}_{2}(z-t)=x_{2}(t-z)$

$$
\Rightarrow s_{t}(z)=x_{1}(z) x_{2}(t-z) \text { in non-zero }
$$

for $0 \leq t \leq 3$.
for $0 \leq t \leq 1$

$$
\Rightarrow y(t)=\int_{-\infty}^{\infty}(z) d z=\int_{s_{t}}^{\int_{0}^{1} 1 d r=t,} \begin{array}{ll}
\int_{0}^{t} 1 \cdot d r=1, & \text { if } 0 \leq t \leq 1 \\
\int_{t-2}^{1} 1 \cdot d r=3-t, & \text { if } 1 \leq t \leq 2 \\
0 & \text { if } t \notin[0,3]
\end{array}
$$

(c) Notice that $s_{f}(z)=x_{3}(z) \cdot x_{1}(t-z)=0$ if $t<0$ for $1>t>0, j_{t}(\tau)= \begin{cases}e^{-2 \tau} & \text { for } 0<\tau<t \text {, } \\ 0 & \text { for } z>t\end{cases}$
for $t>1, s_{t}(z)= \begin{cases}e^{-2 z}, & \text { for } t-1<z<t \\ 0, & \text { otherwise }\end{cases}$
Therefore, $g(t)=\int_{-\infty}^{\infty}(z) d z=\left[\begin{array}{c}0, \\ t\end{array}\right.$ for $\quad t<0$.

(d) $y_{h}(t)=\int_{-\infty}^{\infty} x_{3}(z) x_{3}(t-z) d z=\int_{-\infty}^{\infty} e^{-2 \tau} u(z) \cdot e^{-2(t-z)} u(t-z) d \tau$

Notice that if $t<0, u(\tau) \cdot u(t-\tau)=0$ fool τ.

$$
\text { if } t \geq 0, \quad u(z) \cdot u(t-z)= \begin{cases}1 & \text { for } 0 \leq z \leq t \\ 0, & \text { otherwise }\end{cases}
$$

Therefore

$$
y_{4}(t)=\left\{\begin{array}{l}
0, \text { if } t<0, \\
\int_{0}^{t} e^{-2 t} d z=t \cdot e^{-2 t}, \text { if } t>0
\end{array}\right.
$$

(2.) (a) If we set $x(n)=\delta(n)$, the initial rest condition require that $g_{0}(-1)=0 \quad$ (since $x(n)=0$ for $n<0$).
$y(2)=\alpha \cdot \hat{y(1)}+\frac{0}{\delta(2)}=\alpha^{2} \quad \Rightarrow$ The impulse response

$$
=\alpha^{2} \cdot y(0)
$$ is $h(n)=\alpha^{n} \cdot u(n)$

$$
\begin{aligned}
& =\alpha \cdot y(0) \\
y(n) & =\alpha \cdot y(n-1)+\delta(n)=\alpha \cdot y(n-1) \text { for } n>0
\end{aligned}
$$

(b) Let $x(n) \longrightarrow S_{\alpha_{1}}^{y_{1}(n)} S_{\alpha_{2}} y(n)$.

$$
\begin{aligned}
& \Rightarrow y_{1}(n)=\alpha_{1} y(n-1)+x(n) \Rightarrow y_{1}(n)-\alpha_{1} y_{1}(n-1)=x(n) \\
& y(n)=\alpha_{2} \cdot y(n-1)+y_{1}(n)(* *)
\end{aligned}
$$

To get rid of $y_{1}(n)$ in this eqn., notice that

$$
\alpha_{1} \cdot y(n-1)=\alpha_{1} \cdot \alpha_{2} \cdot y(n-2)+\alpha_{1} \cdot y(n-1)
$$

Subtract this from (**) and we (*) to obtain:

$$
\begin{aligned}
& y(n)-\alpha_{1} y(n-1)=\alpha_{1} y(n-1)-\alpha_{1} \alpha_{2} y(n-2)+{\frac{y_{1}}{}(n)-\alpha_{1} y(n-1)}_{=x(n)}^{\text {Rearranging we obtain: }}
\end{aligned}
$$

Rearranging, we obtain:

$$
\begin{aligned}
& \text { we obtain: } \\
& y(n)-\left(\alpha_{1}+\alpha_{2}\right) y(n-1)+\alpha_{1} \alpha_{2} y(n-2)=x(n) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y(0)=\alpha \cdot \overbrace{1}^{0}(-1)+\overbrace{0}^{1}(0)=1 \\
& y(1)=\alpha \cdot \frac{1}{(0)}+\frac{0}{\delta(1)}=\alpha \Rightarrow y(n)=\alpha^{n} \cdot u(n) \text {. }
\end{aligned}
$$

(c) Comparing the difference equ. in (b) and the question statement we res that theg're equivalent

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}=1 \\
& \alpha_{1} \alpha_{2}=1 / 4
\end{aligned}
$$

$$
\Rightarrow \alpha_{1}=\alpha_{2}=\frac{1}{2}
$$

(d) The impulse repporve of $\rightarrow s_{1} \rightarrow s_{2} \rightarrow$ is given
$h_{1}(n) \neq h_{2}(n)$ where h_{1}, h_{2} are the impulse respores of
S_{1} and S_{2}.

$$
\begin{aligned}
& \Rightarrow h(n)=\left[\left(\frac{1}{2}\right)^{n} \cdot u(n)\right] *\left[\left(\frac{1}{2}\right)^{n} \cdot u(n)\right] \\
& =\sum_{k=-\infty}^{\infty}\left(\frac{1}{2}\right)^{h} \cdot u(h) \cdot\left(\frac{1}{2}\right)^{n-h} \cdot u(n-h) \quad\left(\begin{array}{l}
\text { Note: } \\
u(k) \cdot u(n-h) \\
=1 \begin{array}{ll}
1 & \text { if } \\
0 & 0 \leq h \leq n \\
0 & \text { else }
\end{array}
\end{array}\right) \\
& =\left\{\begin{array}{l}
0, \quad \text { if } n<0 \\
n
\end{array}\right.
\end{aligned}
$$

(3.) $h(n)=h_{1}(n) * h_{2}(n)=h_{1}(n) *\left(\delta(n)-\frac{1}{2} \delta(n-1)\right)$

$$
\Longrightarrow h(n)=h_{1}(n)-\frac{1}{2} h(n-1)
$$

Note: There's missing information. Assume that $h,(n)$ is causal' ie. $h_{1}(n)=0$ for $n<0$.

Under this assumption,

$$
\begin{aligned}
& {\left[\begin{array}{llll}
h_{1}(0) & h_{1}(1) & h_{1}(2) & h_{1}(3)
\end{array}\right] \Rightarrow h_{1}(n)} \\
& -\frac{1}{2} h_{1}(-1)\left[\begin{array}{lllll}
0 & -\frac{1}{2} h_{1}(0) & -\frac{1}{2} h_{1}(1) & -\frac{1}{2} h_{1}(2) \cdots
\end{array}\right] \Rightarrow-\frac{1}{2} h_{1}(n-1) \\
& =[2 \\
& {[h(0) h(1) \quad h(2) \quad h(3) \cdots] \Rightarrow h(n)}
\end{aligned}
$$

Therefore, $h_{1}(0)=2$,

$$
\begin{aligned}
h_{1}(1) & =h(1)+\frac{1}{2} h_{1}(0)=4 \\
h_{1}(2) & =h(2)+\frac{1}{2} h_{1}(1)=2 \\
h_{1}(3) & =h(3)+\frac{1}{2} h_{1}(2)=0 \\
h_{1}\left(h_{1}\right) & =h(4)+\frac{1}{2} h_{1}(3)=0 \\
h_{1}(n) & =0 \text { for } n \geq 4 . \\
\Rightarrow h_{1}(n) & =2 \delta(n)+4 \delta(n-1)+2 \delta(n-2)
\end{aligned}
$$

Note: Without the 'causality' assumption, notice that " $h_{1}(n)+c \cdot\left(\frac{1}{2}\right)^{n}$ "is also a solution. Here, c is an arbitron constant. $\left(\frac{1}{2}\right)^{n}$ is the 'homogeneous solution' of the difference eqn. $y(n)-\frac{1}{2} y(n-1)=0$.
(1.) Note: There's a typo in the equation that relates
$y(t)$ to $x(t)$. It hould be=

$$
y(t)=\int_{-\infty}^{\infty} 3 \times(z+2) f(2 t-2 z) d z
$$

(otherwise the system is not time.)
In this cave, if we set $z+2=t-s$,

$$
\begin{aligned}
& (2 z=2 t-2 s-4) \\
& \Rightarrow y(t)=\int_{-\infty}^{\infty} x(t-s) \cdot 3 \cdot f(2 s-4) d s
\end{aligned}
$$

Now lat $g(1)=3 \cdot f(2 s-4)$ then,

$$
y(t)=\int_{-\infty}^{\infty} x(t-1) g(0) d x \Rightarrow g(s)=3 \cdot f(2-4)
$$

the impale response

(5.) $\times(t)=\underbrace{\frac{1}{2} e^{j(2 \pi) \cdot 2 t}+\frac{1}{2} e^{-j(2 \pi)} 2 t}_{\cos L \pi t}+\underbrace{\frac{1}{2 j} e^{j(2 \pi) \cdot 2 t}-\frac{1}{2 j} e^{-j(2 \pi) 2 t}}_{\sin (L \pi t)}$

$$
=\left(\frac{1}{2}+\frac{1}{2 j}\right) e^{j(2 \pi) \cdot 2 t}+\left(\frac{1}{2}-\frac{1}{2 j}\right) e^{j(2 \pi)(-2) t}
$$

$$
\Rightarrow a_{2}=\frac{1}{2}+\frac{1}{2 j}, \quad a_{-2}=\frac{1}{2}-\frac{1}{2 j}
$$

EHB 252E - Homework 3

Due 05.04.2012

1. Let $u(t)$ denote the continuous-time unit step function.
(a) Compute $u(t) * u(t)$.
(b) Compute $u(t) * u(t) * u(t)$.
(c) Compute $u(t) *(u(t)-u(t-1))$. (Hint: Make use of part (a).)
(d) Compute $u(t) *\left(\sum_{k=0}^{\infty}(-1)^{k} u(t-k)\right)$. (Hint : Make use of part (c).)
2. Let $u(n)$ denote the discrete-time unit step function.
(a) Compute $u(n) * u(n)$.
(b) Compute $u(n) * u(n) * u(n)$.
(c) Let $f(n)=u(n) * u(n) * u(n) * u(n)$. Compute $d(n)=f(n)-f(n-1)$.
3. Let $f(t)$ be a periodic continuous-time signal with period 2 . On $[-1,1), f(t)$ is described as,

$$
f(t)= \begin{cases}0, & \text { for } t \in[-1,-1 / 4) \\ 1, & \text { for } t \in[-1 / 4,1 / 4] \\ 0, & \text { for } t \in(1 / 4,1)\end{cases}
$$

Let us also define the 'sinc' function as,

$$
\operatorname{sinc}(t)= \begin{cases}1, & \text { for } t=0 \\ \frac{\sin (\pi t)}{\pi t}, & \text { for } t \neq 0\end{cases}
$$

Notice that, defined this way, 'sinc' is continuous.
(a) Compute the Fourier series coefficients a_{k} so that $f(t)=\sum_{k} a_{k} e^{j \pi k t}$. Express a_{k} in terms of the sinc function.
(b) Define a new sequence $b_{k}=a_{k}^{2}$. Let $g(t)=\sum_{k} b_{k} e^{j \pi k t}$. Determine and sketch $g(t)$.
(Hint: Make use of the Fourier series properties.)
4. Let S be a continuous-time LTI system with impulse response $h(t)$. Recall that if we input $x(t)=e^{j \omega t}$ to the system, the output is $y(t)=H(j \omega) e^{j \omega t}$ where $H(j \omega)=\int_{t=-\infty}^{\infty} h(t) e^{-j \omega t} d t$.
Suppose that the input and the output are related by the differential equation

$$
y(t)-\frac{3}{4} y^{\prime}(t)=x(t)-x(t-1)
$$

(a) Let us input $x(t)=e^{j \omega t}$ to the system. Determine the output to obtain $H(j \omega)$.
(b) Determine the impulse response $h(t)$. (Hint : Recall the Fourier transform of the function $e^{-s t} u(t)$ for $s>0$. Use the properties of the Fourier transform.)

EHB 2FIE - HW3 Solutions
(1.) (a) Let $r(t)=u(t) * u(t)$.

$$
r(t)=\int_{-\infty}^{\infty} u(t-z) \cdot u(z) d z= \begin{cases}\int_{0}^{t} 1 d z=t, & \text { if } t \geq 0 \\ 0, & \text { if } t<0\end{cases}
$$

$\Rightarrow r(t)=t \cdot u(t)$. (this is called the 'ramp' function)
(b) Let $y(t)=u(t) * u(t) * u(t)$

Since $u(t) * u(t)=r(t)$ and convolution is associative, we hove

$$
\begin{aligned}
y(t) & =r(t) * u(t) \\
& =\int_{-\infty}^{\infty} z \cdot u(z) \cdot u(t-z) d z=\int_{0}^{t} z d z=\frac{t^{2}}{2}, \text { if } t z 0 \\
0, & \text { if } t<0
\end{aligned}
$$

(c) Let $z(t)=u(t) *[u(t)-u(t-1)]$

Then, $z(t)=\underbrace{u(t) * u(t)}_{=r(t)}-\underbrace{u(t) * u(t-1)}_{=r(t-1)}$

$$
\Rightarrow z(t)=\left\{\begin{array}{lll}
t & \text { for } & 0 \leq t \leq 1 \\
1 & \text { for } & t \geq 1 \\
0 & \text { for } & t<0
\end{array}\right. \text {. }
$$

(d) Let $x(t)=u(t) *\left[\sum_{h=0}^{\infty}(-1)^{k} \cdot u(t-k)\right]$

Then for $z(t)=u(t) *(u(t)-u(t-1))$, we can write $x(t)$ as $x(t)=\underbrace{u(t) *[u(t)-u(t-1)]}_{z(t)}+\underbrace{u(t) *[u(t-2)-u(t-3]}_{z(t-2)}+\ldots$

$$
=\sum_{m=0}^{\infty} z(t-2 m)
$$

$x(t)$ can be expresed bymaling use of the "floor"
 function...
(2.) (a) Let $r(n)=u(n) * u(n)$.

$$
r(n)=\sum_{k=-\infty}^{\infty} u(n-h) \cdot u(k)= \begin{cases}\sum_{k=0}^{n} 1=n+1, & \text { if } n \geq 0 \\ 0, & \text { if } n<0\end{cases}
$$

$r(1)$: discrete ramp
(b) Let $y(n)=u(n) * u(n) * u(n)$. Then, $y(n)=r(n) * u(n)$.

$$
\Rightarrow y(n)=\sum_{k=-\infty}^{\infty} r(k) u(n-k)= \begin{cases}\sum_{k=0}^{n} k=\frac{h(h+1)}{2} & \text { if } n \geq 0 \\ 0, & \text { if } n<0\end{cases}
$$

(2.) (c)

$$
\begin{aligned}
& f(n)-f(n-1)=y(n) * u(n)-y(n) * u(n-1) \\
& =f \operatorname{rom}(b)=y(n) *[\underbrace{v(n)-u(n-1)]}=y(n) .
\end{aligned}
$$

(3.)

$$
\begin{aligned}
& \text { (a) } \int_{h}^{F_{0} r} k=\frac{1}{2} \cdot \int_{-1}^{1} f(t) e^{-j \pi h t} d t=\frac{1}{2} \int_{-1 / 4}^{1 / 4} e^{-j \pi h t} d t \\
& =\left.\frac{1}{2} \cdot \frac{1}{-j \pi k} \cdot e^{-j \pi h t}\right|_{-1 / 4} ^{1 / 4}=\frac{\sin \pi k / 4}{\pi k} \\
& =\frac{\sin \left(\frac{\pi k}{4}\right)}{\left(\frac{\pi h}{4}\right)} \cdot \frac{1}{4}=\frac{1}{4} \cdot \sin c\left(\frac{k}{4}\right)
\end{aligned}
$$

For $l=0, \quad a_{0}=\frac{1}{2} \int_{-1 / 4}^{1 / 4} 1 \cdot d t=\frac{1}{4}=\frac{1}{4} \operatorname{sinc}(0)$.
$\Rightarrow a_{h}=\frac{1}{4} \sin \left(\frac{k}{4}\right)$ for all $k \in Z$.
(b) Raul that, if $x(t)$ and $y(t)$ are periodic with T and $\left.\begin{array}{c}x(t) \leftrightarrow c_{k} \\ y(t) \leftrightarrow d_{k}\end{array}\right\}$ then, for $z(t)=\frac{1}{T} \int_{s}^{s+T} x(z) y(t-z) d \tau$ (s is arbitrary) we have $\quad z(t) \longleftrightarrow c_{k} \cdot d_{k}$
so, for $g(t)=\frac{1}{2} \cdot \int_{-1}^{1} f(z) \cdot f(t-z) d z$
$g(t) \longleftrightarrow a_{h}^{2}$.
As ofunction of $Z, f(t-i)$ hots like (periotic

\Rightarrow for $-1 \leq t \leq-\frac{1}{2}, g(t)=\frac{1}{2} \int \underbrace{f(z) f(t-z)}_{=0} d z=0$
for $-\frac{1}{2} \leq t \leq 0, \quad g(t)=\frac{1}{2} \int_{-\frac{1}{4}}^{1 / 4+t} 1 d z=\left(\frac{1}{2}+t\right) / 2$
for $0 \leq t \leq \frac{1}{2}, \quad g(t)=\frac{1}{2} \int_{-\frac{1}{4}+t}^{1 / 4} 1 d z=\left(\frac{1}{2}-t\right) / 2$
for $\frac{1}{2} \leq t \leq 1, g(t)=\frac{1}{2} \int \frac{i^{\prime}(\tau) f(t-\tau)}{d}=0$.
Also notice that $g(t+z)=\frac{1}{2} \int f(z) f(t+2-z) d z$
since f i: periodic with $T=2$.
\sum_{-1}^{\prime} io periodic with $T=2$.
$\frac{1}{2} \int_{-1}^{t} f(z) f(t-z) d \tau=g(t) \Rightarrow g(t)$ in periodic
with $T=2$

(4.) (a) Since $\left.y(t)=H(j \omega) e^{j \omega t}, y^{\prime}(t)=j \omega \cdot H(j \omega) e^{j \omega t}=j \omega \cdot H(j \omega)\right)_{x(t)}$. Also, $x(t-1)=e^{j \omega(t-1)}=e^{-j \omega} \times(t)$.
Therefore, $y(t)=\left(\frac{3}{4} j \omega \cdot H(j \omega) t 1-e^{-j \omega}\right) \cdot x(t)=H(j \omega) \cdot x(t)$

$$
\begin{aligned}
& \Rightarrow H(j \omega)=\frac{3}{4} j \omega \cdot H(j \omega)+1-e^{-j \omega} \\
& \Rightarrow H(j \omega)=\frac{1-e^{-j \omega}}{1-\frac{3}{4} j \omega}
\end{aligned}
$$

(b) Since for $z^{(t)}=e^{-s t} u(t), \quad z(j \omega)=\int_{0}^{\infty} e^{-s t} e^{-j \omega t} d t$

$$
\text { (with } s>0 \text {) }
$$

$$
=\frac{1}{s+j w}
$$

we have that the FT of $z(-t)$ is given by

$$
z(-j \omega)=\frac{1}{s-j \omega}
$$

Therefore the inverse FT of $\quad \frac{1}{1-3 / 4 j \omega}=\frac{1}{3 / 4(4 / 3-j \omega)}=H_{1}(j \omega)$

$$
\text { is } \frac{4}{3} e^{4 / 3 t}{ }_{u}(-t) \cdot\left(=h_{1}(t)\right)
$$

Finally the FT of $h_{1}(t-1): e^{-j \omega} \cdot H_{1}(j \omega)$

$$
\text { so, } h(t)=h_{1}(t)-h_{1}(t-1)=\frac{4}{3}\left[e^{4 / 3 t} u(-t)-e^{4 / 3(t-1)} u(1-t)\right]
$$

EHB 252E - Homework 4

Due 10.05.2012

1. Let $x(t)$ be a continuous-time signal whose Fourier transform $X(\omega)$ is as given below.

(a) Let $f(n)$ be a discrete time signal defined as $f(n)=x(n / 2)$. Determine and sketch $F\left(e^{j \omega}\right)$.
(b) Let $f(n)$ be a discrete time signal defined as $f(n)=x(n)$. Determine and sketch $F\left(e^{j \omega}\right)$.
(c) Let $f(n)$ be a discrete time signal defined as $f(n)=x(2 n)$. Determine and sketch $F\left(e^{j \omega}\right)$.
2. Let $x(t)$ be a continuous-time signal whose Fourier transform $X(\omega)$ is as given below.

Also let

$$
p(t)=\sum_{k \in \mathbb{Z}} \delta(t-2 k) \quad \text { and } \quad s(t)=p(t-1)
$$

Using these, we define two new signals $g(t)$, $h(t)$ as, $g(t)=x(t) p(t)$ and $h(t)=x(t) s(t)$.
(a) Sketch $p(t)$.
(b) Determine and sketch $G(\omega)$, the Fourier transform of $g(t)$.
(c) Sketch $s(t)$.
(d) Determine and sketch $H(\omega)$, the Fourier transform of $h(t)$.
(e) Let $y(t)=g(t)+h(t)$. Determine and sketch $Y(\omega)$, the Fourier transform of $y(t)$.
3. Let $x(t)$ be a continuous-time signal whose Fourier transform $X(\omega)$ is as given below.

Also, let

$$
f(t)=\sum_{k \in \mathbb{Z}} x(k) \delta(t-k) .
$$

(a) What is the Nyquist frequency for $x(t)$?
(b) Sketch $F(\omega)$, the Fourier transform of $f(t)$.
(c) Find a filter $H(\omega)$ so that the output of the LTI system below is $x(t)$.

(d) Find a function $g(t)$ so that

$$
x(t)=\sum_{k \in \mathbb{Z}} x(k) g(t-k) .
$$

4. Suppose that $x(n)$ is a discrete-time sequence whose DTFT is specified as,

$$
X\left(e^{j \omega}\right)= \begin{cases}1, & \text { for }|\omega| \leq \pi / 2 \\ 0, & \text { for } \pi / 2<|\omega| \leq \pi\end{cases}
$$

(a) Sketch $X\left(e^{j \omega}\right)$ for $-2 \pi \leq \omega \leq 2 \pi$.
(b) Let $y(n)$ be defined as,
$y(n)= \begin{cases}x(n / 3), & \text { if } n \text { is divisible by } 3, \\ 0, & \text { if } n \text { is not divisible by } 3 .\end{cases}$
Sketch $Y\left(e^{j \omega}\right)$ for $-\pi \leq \omega \leq \pi$.
(c) Let $z(n)$ be defined as $z(n)=x(3 n)$. Sketch $Z\left(e^{j \omega}\right)$ for $-2 \pi \leq \omega \leq 2 \pi$.
5. Below are shown four discrete-time signals, their DTFT magnitudes, and pole-zero diagrams. But they are not in the correct order. Put them in the correct order by matching each signal with its DTFT magnitude and pole-zero diagram.

(I)

(II)

(III)

(IV)

(a)

(b)

(c)

(d)

(1)

(2)

(3)

(4)

EHB 252 E - Signals and Systems

Midterm Examination I
15.03.2012

4 Questions, 100 Minutes
Please Show Your Work!
(25 pts) 1. Let $f(t)$ be a continuous-time signal described as

$$
f(t)= \begin{cases}1+t, & \text { for }-1 \leq t \leq 0 \\ 1, & \text { for } 0<t \leq 1 \\ 0, & \text { for } t \notin[-1,1]\end{cases}
$$

(a) Sketch $f(t)$.
(b) Let $g(t)=f\left(\frac{1}{2} t\right)$. Determine and sketch $g(t)$.
(c) Let $h(t)=f(2-t)$. Determine and sketch $h(t)$.
(25 pts) 2. Consider the discrete-time LTI system below.

- If we input $x_{1}(n)=\delta(n-1)+\delta(n-2)$ to the system, the output is $y_{1}(n)=$ $\delta(n)-\delta(n-2)$.
- If we input $x_{2}(n)=2 \delta(n)+\delta(n-1)$ to the system, the output is $y_{2}(n)=2 \delta(n+$ 1) $-\delta(n)-\delta(n-1)$.
(a) Determine and sketch the output if we input $x_{1}(n-1)$ to the system.
(b) Determine and sketch the output if we input $x_{1}(n)-x_{2}(n)$ to the system.
(c) Determine and sketch the impulse response of S.
(25 pts) 3. Consider the discrete-time, time-invariant system below.

Suppose that the relation between $y(0)$ and the input is,

$$
y(0)=2[x(0)]^{2}+[x(1)]^{2}
$$

(a) Determine the output if we input $x_{1}(n)=2 \delta(n)$ to the system.
(b) Determine the output if we input $x_{2}(n)=-\delta(n-1)$ to the system.
(c) Determine the output if we input $x_{3}(n)=2 \delta(n)-\delta(n-1)$ to the system.
(25 pts) 4. Let F_{1} and F_{2} be continuous-time LTI systems. We connect these two systems in cascade to form the system S shown below.

Suppose that

- The impulse response of S is

$$
h(t)= \begin{cases}t, & \text { for } 0 \leq t \leq 1, \\ 2-t, & \text { for } 1<t \leq 2, \\ 0, & \text { for } t \notin[0,2]\end{cases}
$$

- The impulse response of F_{2} is

$$
u(t)= \begin{cases}1, & \text { for } 0 \leq t \\ 0 & \text { for } t<0\end{cases}
$$

(a) Determine the step response of S (i.e. the response of the system when a unit step function is input).
(b) Determine the step response of F_{1}.
(c) Determine the impulse response of F_{1}.

Midterm Examination II
19.04.2012

Student Name : \qquad

Student Num. : \qquad

4 Questions, 90 Minutes
Please Show Your Work!
(25 pts) 1. Let $g(t)$ be a continuous time-signal. Suppose that the Fourier transforms of

$$
\begin{aligned}
& g_{1}(t)=g(t) \cos (t), \\
& g_{2}(t)=-j g(t) \sin (t),
\end{aligned}
$$

are as shown below (both $G_{1}(\omega)$ and $G_{2}(\omega)$ turn out to be real-valued functions).

Determine and sketch $G(\omega)$, the Fourier transform of $g(t)$.
(25 pts) 2. Let S_{1} and S_{2} be causal, LTI, continuous-time systems as shown below.

Suppose that the input and the ouput of S_{1} and S_{2} satisfy the differential equations :

$$
\begin{array}{ll}
S_{1}: & y_{1}(t)+\frac{1}{2} y_{1}^{\prime}(t)=x(t) \\
S_{2}: & y_{2}(t)+\frac{1}{4} y_{2}^{\prime}(t)=x(t)
\end{array}
$$

(a) Find $h_{1}(t)$, the impulse response of S_{1}.
(b) Suppose we connect the two systems in parallel to form the system S as shown below.

For S, find the differential equation that relates $y(t)$ to $x(t)$.
(25 pts) 3. Consider a discrete-time LTI system whose unit impulse response is $h(n)=\alpha^{n-n_{0}} u\left(n-n_{0}\right)$ (where $|\alpha|<1$ and n_{0} is a constant). Suppose we input $x(n)=e^{j \pi n}$ to the system. Also, let $y(n)$ denote the output.
(a) Find $H\left(e^{j \omega}\right)$, the frequency response of the system (i.e. the DTFT of the impulse response), in terms of α and n_{0}.
(b) Determine $X\left(e^{j \omega}\right)$, the DTFT of the input.
(c) Determine $Y\left(e^{j \omega}\right)$, the DTFT of the output, in terms of α and n_{0}.
(d) Determine the output $y(n)$, for $\alpha=2 / 3, n_{0}=4$.
(25 pts) 4. Consider a causal, discrete-time LTI system with impulse response $h(n)$. Suppose that the input $x(n)$ and the output $y(n)$ satisfy the difference equation

$$
y(n)-\frac{1}{4} y(n-1)=x(n-2) .
$$

(a) Find the frequency response $H\left(e^{j \omega}\right)$ of the system (i.e. the DTFT of $\left.h(n)\right)$.
(b) Find the impulse response $h(n)$ of the system.
(c) Find the output if we input $x(n)=(1 / 2)^{n} u(n)$ to the system.

EHB 252E - Signals and Systems
Final Examination
22.05.2012

5 Questions, 120 Minutes
Please Show Your Work!
$(25 \mathrm{pts})$ 1. Below, the relation between the input, $x(t)$, and the output, $y(t)$, are given for five different continuous-time systems. For each system, specify whether the system is (i) linear or not, (ii) time-invariant or not. Briefly explain your answer for full credit.
(a) $y(t)=2 x(t)$.
(b) $y(t)=2 x(t)+1$.
(c) $y(t)=x\left(t^{2}+1\right)$.
(d) $y(t)=t x\left(t^{2}+1\right)$.
(e) $y(t)=\int_{0}^{2} \tau x(t-\tau) d \tau$.
(15 pts) 2. Consider an LTI continuous-time system where the relation between the input $x(t)$ and the output $y(t)$ is specified as,

$$
y(t)=\int_{t-1}^{t+1} x(\tau) d \tau
$$

Determine and sketch the impulse response of this system.
(15 pts) 3. Let T be a continuous-time LTI system. Suppose that, if we input $x(t)$ to the system, the output is $y(t)$ as shown below.

Determine and sketch the output if we input $z(t)$ shown below to T.

(20 pts) 4. Let $x(t)$ be a continuous-time signal whose Fourier transform is as shown below.

ω

Also, let the continuous-time signal $y(t)$ be defined as,

$$
y(t)=\sum_{k \in \mathbb{Z}} x(k / 2) \delta(t-k / 2)
$$

Finally, let us define the discrete-time signal $z(n)$ as,

$$
z(n)=x(n / 2) \quad \text { for } n \in \mathbb{Z}
$$

(a) Determine and sketch $Y(j \omega)$, the Fourier Transform of $y(t)$.
(b) Determine and sketch $Z\left(e^{j \omega}\right)$, the DTFT of $z(n)$.
(25 pts) 5. Let T be an LTI system with impulse response $h(n)=(1 / 2)^{n} u(n)$. Also, let the step response of this system be $y(n)$.
(a) Find $H(z)$, the z-transform of the impulse response.
(b) Sketch the pole-zero diagram of $H(z)$ and specify the region of convergence (ROC).
(c) Find $Y(z)$, the z-transform of the step response. What is the region of convergence?
(d) Determine $y(n)$, the step response of the system.

