EHB 252E - Signals and Systems

Instructor:	Ilker Bayram EEB 1103 ibayram@itu.edu.tr
Class Meets :	$13.30-16.30$, Thursday EEB 5204
Office Hours:	$10.00-12.00$, Thursday
Textbook:	A. V. Oppenheim, A. S. Willsky, S. H. Nawab, 'Signals and Systems', $2^{\text {nd }}$ Edition, Prentice Hall.
Grading :	2 Midterms (30\% each), Final (40\%).

Tentative Course Outline

- Introduction to Signals and Systems

Basic discrete and continuous-time signals and their properties, transformations of the independent variable, basic system properties

- Linear Time-Invariant Systems

Discrete and continuous time LTI systems, convolution sum and integral, properties of LTI systems, LTI systems defined by differential and difference equations

- Fourier Series

Representation of continuous and discrete-time signals using Fourier series, properties of Fourier series, LTI systems and Fourier series

- The Continuous-Time Fourier Transform
- The Discrete-Time Fourier Transform
- Frequency Domain Characterization of Systems

Magnitude-phase representations, ideal frequency selective filters

- Sampling

A/D, D / A conversion, aliasing, discrete-time processing of continuous-time signals

- The z-Transform

The z transform, region of convergence, inverse z-transform, properties of the z-transform, characterizing LTI systems using the z-transform

- The Laplace Transform

The Laplace transform, region of convergence, inverse Laplace transform, properties of the Laplace transform, characterizing LTI systems using the Laplace transform

EHB 252E - Homework 1

Due 28.02.2013

1. Let $x(t)$ be a signal described as

$$
x(t)= \begin{cases}t+1, & \text { for }-1 \leq t \leq 0 \\ 1, & \text { for } 0<t \leq 1 \\ 0, & \text { for } t \notin[-1,1]\end{cases}
$$

(a) Sketch $x(t)$.
(b) Sketch $y(t)=x(2-t)$.
2. Consider a continuous-time system T as shown below.

(a) Suppose that $y(t)=x(2 t)$. Is T causal? Linear? Time-invariant? Stable in the BIBO sense?
(b) Suppose that $y(t)=\int_{-1}^{1} x(t-s) s^{2} d s$. Is T linear? Time-invariant? Stable in the BIBO sense?
(c) Suppose that $y(t)=x^{\prime}(t)$ (i.e. the system differentiates the input). Is T linear? Timeinvariant? Stable in the BIBO sense?

Solution. In the following, suppose that the output to the input $x_{i}(t)$ is denoted by $T\left\{x_{i}\right\}=y_{i}(t)$ for $i=1,2$.
(a) Note that $y(1)=x(2)$, so T is not causal. For a, b real numbers, we have that

$$
T\{\underbrace{a x_{1}(t)+b x_{2}(t)}_{z(t)}\}=z(2 t)=a x_{1}(2 t)+b x_{2}(2 t)=a y_{1}(t)+b y_{2}(t) .
$$

Therefore, T is linear.
Suppose $x_{2}(t)=x_{1}(t-1)$. Then, $y_{2}(t)=x_{2}(2 t)=x_{1}(2 t-2) \neq y_{1}(t-1)$. Thus, T is not time-invariant.
Suppose $|x(t)|<M$ for some M. Then, we also have that $|y(t)|<M$. Therefore the system is BIBO stable.
(b) For the inputs x_{1}, x_{2}, we have,

$$
\begin{aligned}
& y_{1}(t)=\int_{-1}^{1} x_{1}(t-s) s^{2} d s \\
& y_{2}(t)=\int_{-1}^{1} x_{2}(t-s) s^{2} d s
\end{aligned}
$$

Therefore if we input $a x_{1}(t)+b x_{2}(t)$ to the system, we get

$$
\begin{aligned}
y(t) & =\int_{-1}^{1}\left(a x_{1}(t-s)+b x_{2}(t-s)\right) s^{2} d s \\
& \left.=a \int_{-1}^{1} x_{1}(t-s) d s+b \int_{-1}^{1} x_{2}(t-s)\right) s^{2} d s \\
& =a y_{1}(t)+b y_{2}(t) .
\end{aligned}
$$

Therefore, the system is linear.

Suppose $x_{2}(t)=x_{1}(t-\tau)$ for some τ. Then,

$$
\begin{aligned}
y_{2}(t) & =\int_{-1}^{1} x_{2}(t-\tau) s^{2} d s \\
& =\int_{-1}^{1} x_{1}(t-\tau-s) s^{2} d s \\
& =y_{1}(t-\tau) .
\end{aligned}
$$

Since τ is arbitrary, T is time-invariant.
Suppose now that $|x(t)|<M$ for all t. We have then,

$$
\begin{aligned}
|y(t)| & =\left|\int_{-1}^{1} x(t-\tau) s^{2} d s\right| \\
& \leq \int_{-1}^{1}\left|x_{1}(t-\tau-s) s^{2}\right| d s \\
& \leq \int_{-1}^{1} M\left|s^{2}\right| d s \\
& =\frac{2}{3} M
\end{aligned}
$$

Thus, the system is BIBO-stable.
(c) Since $\left(a x_{1}(t)+b x_{2}(t)\right)^{\prime}=a x_{1}^{\prime}(t)+b x_{2}^{\prime}(t)=a y_{1}(t)+b y_{2}(t)$, the system is linear.

Also, noting that $\left(x_{1}(t-\tau)\right)^{\prime}=x_{1}^{\prime}(t-\tau)=y_{1}(t-\tau)$, the system is seen to be time-invariant. Finally, consider the family of signals

$$
x_{\epsilon}(t)= \begin{cases}t / \epsilon, & \text { for } 0 \leq t \leq \epsilon, \\ 0, & \text { for } t \notin[0, \epsilon] .\end{cases}
$$

Observe that $\left|x_{\epsilon}(t)\right| \leq 1$. However, we have that $\left|x_{\epsilon}(\epsilon / 2)\right|=1 / \epsilon^{2}$. Even though this family of functions are bounded with the same bound, namely 1 , the system output for this family is not bounded. Therefore the system is not BIBO-stable.
3. An AM modulator transforms a given signal $x(t)$ into $y(t)=\cos (2 \pi f t) x(t)$, where f is a fixed constant (called the modulating frequency). Is the AM modulator linear? Time-invariant?

Solution. Suppose that the output to the input $x_{i}(t)$ is denoted by $T\left\{x_{i}\right\}=y_{i}(t)$ for $i=1,2$. We have then,

$$
\begin{aligned}
T\left\{a x_{1}(t)+b x_{2}(t)\right\} & =\cos (2 \pi f t)\left(a x_{1}(t)+b x_{2}(t)\right) \\
& =a\left[\cos (2 \pi f t) x_{1}(t)\right]+b\left[\cos (2 \pi f t) x_{2}(t)\right] \\
& =a y_{1}(t)+b y_{2}(t)
\end{aligned}
$$

Therefore the system is linear.
Now suppose that $x_{2}(t)=x_{1}(t-1 /(2 f))$. In this case,

$$
\begin{aligned}
T\left\{x_{2}(t)\right\} & =\cos (2 \pi f t) x_{1}(t-1 /(2 f)) \\
& =\cos (2 \pi f(t-1 /(2 f)+1 /(2 f))) x_{1}(t-1 /(2 f)) \\
& =-\cos (2 \pi f(t-1 /(2 f))) x_{1}(t-1 /(2 f)) \\
& =-y_{1}(t-1 /(2 f)) \neq y_{1}(t-1 /(2 f)) .
\end{aligned}
$$

Thus, the system is not time-invariant.

EHB 252E - Homework 2

Due 07.03.2013

1. Let S_{1} and S_{2} be two systems, connected in cascade as shown below.

Let us call the overall system S.
(a) Suppose that S_{1} and S_{2} are both linear systems. Show that S is also a linear system.
(b) Suppose that S_{1} and S_{2} are both time-invariant systems. Show that S is also a time-invariant system.

Solution. (a) Suppose we input x_{1} and x_{2} to the cascade system and observe at the output y_{1} and y_{2} respectively. Now suppose also that the output of S_{1} to the input x_{i} is given by z_{i} for $i=1,2$. In this case, we should have that if we input z_{i} to S_{2} then we should observe at the output y_{i}, for $i=1,2$.
Now suppose we input $x=a x_{1}+b x_{2}$ to the system S_{1}, where a and b are real constants. Because of the linearity of S_{1}, the output should be $z=a z_{1}+b z_{2}$. Now if we input z to S_{2}, since (i) z is a linear combination of z_{i} 's, (ii) the response of S_{2} to z_{i} is y_{i} and (iii) S_{2} is a linear system, we should observe at the output $y=a y_{1}+b y_{2}$. Thus, the response of the cascade system is also the same linear combination of y_{i} 's. Therefore the cascade system is linear.
(b) Suppose that when we input $x_{1}(t)$ to S_{1}, the output is $z_{1}(t)$, and when $z_{1}(t)$ is input to S_{2}, the output is $y_{1}(t)$. This means that when $x_{1}(t)$ is input to the system connected in series, the output is $y_{1}(t)$.
Now suppose we input $x_{2}(t)=x_{1}(t-\tau)$ to S_{1}, where τ is a constant. Because of the timeinvariance of S_{1}, the output should satisfy $z_{2}(t)=z_{1}(t-\tau)$. Now if we input $z_{2}(t)$ to S_{2}, by the time-invariance of S_{2}, the output should satisfy $y_{2}(t)=y_{1}(t-\tau)$. In summary, we found that, provided that both systems are time-invariant, when we shift the input to the system in cascade, the output is shifted by the same amount. Therefore the system connected in cascade is also time-invariant.
2. (From our textbook) Given a signal $f(t)$, let us define c_{f} as,

$$
c_{f}=\int_{-\infty}^{\infty} f(t) d t
$$

Now let $h(t)$ be the impulse response of an LTI system. Also, let $y(t)$ be the output of this system when $f(t)$ is input, i.e. $y(t)=(h * f)(t)$. Show that

$$
c_{y}=c_{h} c_{f}
$$

Solution. Note that

$$
y(t)=\int_{-\infty}^{\infty} h(t-\tau) f(\tau) d \tau
$$

Therefore, (assuming we can change the order of integration...)

$$
\begin{aligned}
c_{y} & =\int_{-\infty}^{\infty} y(t) d t \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} h(t-\tau) f(\tau) d \tau\right) d t \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} h(t-\tau) d t\right) f(\tau) d \tau \\
& =c_{h} \int_{-\infty}^{\infty} f(\tau) d \tau \\
& =c_{h} c_{f} .
\end{aligned}
$$

3. Consider a discrete-time LTI system whose impulse response is $h(n)=\delta(n)-\delta(n-1)$. We input $x(n)$ to this system and observe the output $y(n)=\delta(n+1)-\delta(n-2)$. Suppose we also know that $x(-3)=0$. Determine $x(n)$.
Solution. Observe that

$$
(x * h)(n)=x(n)-x(n-1)
$$

Therefore, we should have

$$
y(n)=x(n)-x(n-1)
$$

But we are already given what $y(n)$ is. So we obtain that (i) $x(n)-x(n-1)=\delta(n+1)-\delta(n-2)$, (ii) $x(-3)=0$. Writing (i) as $x(n)=x(n-1)+\delta(n+1)-\delta(n-2)$, we can make use of (ii) to compute $x(-2)$ as 0 . Feeding this into the same equation, we obtain $x(-1)$ as 1 . Continuing like this, we find

$$
\begin{aligned}
& x(0)=x(-1)+\delta(1)-\delta(-2)=1, \\
& x(1)=x(0)+\delta(2)-\delta(-1)=1, \\
& x(2)=x(1)+\delta(3)-\delta(0)=0, \\
& x(3)=x(2)+\delta(4)-\delta(1)=0,
\end{aligned}
$$

Observe also that $x(n)=0$, for $n>3$. Similarly, by rewriting (i) above as $x(n-1)=x(n)-\delta(n+$ 1) $+\delta(n-2)$ we can see that $x(n)=0$ for $n<-3$.

Thus, $x(n)=\delta(n+1)+\delta(n)+\delta(n-1)$.
4. (a) Consider an LTI system whose output $y(t)$ is related to its input $x(t)$ through the equation

$$
y(t)=2 \int_{0}^{3} x(t-\tau) \tau d \tau
$$

Find the impulse response of this system.
(b) Consider an LTI system whose output $y(t)$ is related to its input $x(t)$ through the equation

$$
y(t)=\int_{t}^{t+1} x(\tau-2)(1-t+\tau) d \tau
$$

Find the impulse response of this system.
Solution. (a) Notice that $y(t)$ can be written as

$$
y(t)=\int_{-\infty}^{\infty} x(t-\tau) h(\tau) d \tau
$$

where

$$
h(t)= \begin{cases}2, & \text { for } t \in[0,3] \\ 0, & \text { for } t \notin[0,3]\end{cases}
$$

This $h(t)$ should be the impulse response of the system.
(b) Let us change variables and define $s=\tau-2$. Then we have, (observe also the change of the limits of integration)

$$
\begin{aligned}
y(t) & =\int_{t-2}^{t-1} x(s)(1-t+s+2) d s \\
& =\int_{-\infty}^{\infty} x(s)(3-(t-s))(u(s-(t-2))-u(s-(t-1)) d s \\
& =\int_{-\infty}^{\infty} x(s)(3-(t-s))(u(2-(t-s))-u(1-(t-s)) d s \\
& =\int_{-\infty}^{\infty} x(s) h(t-s) d s
\end{aligned}
$$

where

$$
h(t)= \begin{cases}3-t, & \text { for } t \in[1,2] \\ 0, & \text { for } t \notin[1,2]\end{cases}
$$

This $h(t)$ should be the impulse response of the system.

EHB 252E - Homework 3

Due 21.03.2013

1. Let S be a discrete-time LTI system. Suppose we input

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)
$$

to S and observe the output

$$
y(n)=\delta(n)+\left(\frac{1}{2}\right)^{n-1} u(n-1)
$$

Find $h(n)$, the impulse response of S.
2. Let $x(t)=e^{2 t} u(-t), h(t)=u(t)$. Also, let $y(t)=(x * h)(t)$. Determine and sketch $y(t)$.
3. Consider an LTI system whose response to the input $x(t)=\delta(t)-\delta(t-1)$ is given by

$$
h(t)= \begin{cases}1, & \text { for } 0<t \leq 1 \\ -1, & \text { for } 1<t \leq 2\end{cases}
$$

Determine the unit step response of this system.
4. Suppose that, for a given signal $x(t)$ (not necessarily periodic), we define

$$
y(t)=\sum_{k=-\infty}^{\infty} x(t-k T)
$$

Assume that $|y(t)| \leq \infty$.
(a) Show that $y(t)$ is periodic by T.
(b) Find a function $f(t)$ such that

$$
\int_{0}^{T} y(t) \phi_{k}^{*}(t) d t=\int_{-\infty}^{\infty} x(t) f(t) d t
$$

where

$$
\phi_{k}(t)=\exp \left(j \frac{2 \pi}{T} k t\right)
$$

EHB 252E - Homework 3 Solutions

1. Notice that

$$
\left(\frac{1}{2}\right)^{n} u(n)=\delta(n)+\left(\frac{1}{2}\right)^{n} u(n-1)
$$

Using this observation, we can write

$$
\begin{aligned}
y(n) & =y(n)+\left(\frac{1}{2}\right)^{n} u(n)-\left(\frac{1}{2}\right)^{n} u(n) \\
& =\left(\frac{1}{2}\right)^{n} u(n)+\left[\left(\frac{1}{2}\right)^{n-1} u(n-1)-\left(\frac{1}{2}\right)^{n} u(n-1)\right]+[\delta(n)-\delta(n)] \\
& =\left(\frac{1}{2}\right)^{n} u(n)-\left(\frac{1}{2}\right)^{n-1} u(n-1) \\
& =x(n)-x(n-1)
\end{aligned}
$$

Thus, $h(n)=\delta(n)-\delta(n-1)$.
2. We have,

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =\int_{-\infty}^{\infty} e^{2 \tau} u(-\tau) u(t-\tau) d \tau
\end{aligned}
$$

We will consider two special intervals for t.
(i) $t<0$: In this case,

$$
u(-\tau) u(t-\tau)= \begin{cases}1, & \text { for } \tau \leq t \\ 0, & \text { for } t<\tau\end{cases}
$$

Therefore, for $t<0$,

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{t} e^{2 \tau} d \tau \\
& =\frac{1}{2} e^{2 t} .
\end{aligned}
$$

(ii) $t \geq 0$: In this case,

$$
u(-\tau) u(t-\tau)= \begin{cases}1, & \text { for } \tau \leq 0 \\ 0, & \text { for } 0<\tau\end{cases}
$$

Therefore, for $t \geq 0$,

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{0} e^{2 \tau} d \tau \\
& =\frac{1}{2} .
\end{aligned}
$$

To summarize,

$$
y(t)= \begin{cases}\frac{1}{2} e^{2 t}, & \text { for } t<0 \\ \frac{1}{2}, & \text { for } 0 \leq t\end{cases}
$$

3. Observe that if we convolve $x(t)$ and $h(t)$, we obtain (carry out this convolution!),

$$
z(t)= \begin{cases}1, & \text { for } 0 \leq t \leq 1 \\ 0, & \text { for } t \notin[0,1]\end{cases}
$$

Also observe that

$$
u(t)=\sum_{k=0}^{\infty} z(t-k)
$$

Therefore if the response of the system to $z(t)$ is given as $y(t)$, then by the LTI property, the unit step response should be

$$
s(t)=\sum_{k=0}^{\infty} y(t-k)
$$

To find the response of the system to $z(t)$, namely $y(t)$, all we have to do is to convolve $h(t)$ with $u(t)$ (why?). Convolving $h(t)$ and $u(t)$ (make sure you can do this on your own!), we obtain (sketch it to see what it looks like),

$$
y(t)= \begin{cases}t, & \text { for } 0 \leq t \leq 1 \\ 2-t, & \text { for } 1<t \leq 2 \\ 0, & \text { for } t \notin[0,2]\end{cases}
$$

From $y(t)$, we obtain $s(t)$ as (sketch $y(t), y(t-1), y(t-2)$, etc. to see this)

$$
s(t)=\sum_{k=0}^{\infty} y(t-k) \begin{cases}0, & \text { for } t<0 \\ t, & \text { for } 0 \leq t \leq 1 \\ 1, & \text { for } 1<t\end{cases}
$$

4. (a) We claim that $y(t)$ is periodic with T. To show this, observe that

$$
\begin{aligned}
y(t-T) & =\sum_{k=-\infty}^{\infty} x((t-T)-k T) \\
& =\sum_{k=-\infty}^{\infty} x(t-(k+1) T) \\
& =\sum_{l=-\infty}^{\infty} x(t-l T) \quad(\text { take } l=k+1) \\
& =y(t)
\end{aligned}
$$

(b) Observe that $\phi_{k}^{*}(t+T)=\phi_{k}^{*}(t)$. That is, $\phi_{k}^{*}(t)$ is periodic with T. Now,

$$
\begin{aligned}
\int_{0}^{T} y(t) \phi_{k}^{*}(t) d t & =\int_{0}^{T} \sum_{k=-\infty}^{\infty} x(t-k T) \phi_{k}^{*}(t) d t \\
& =\sum_{k=-\infty}^{\infty} \int_{0}^{T} x(t-k T) \phi_{k}^{*}(t) d t \\
& =\sum_{k=-\infty}^{\infty} \int_{0}^{T} x(t-k T) \phi_{k}^{*}(t-k T) d t \\
& =\sum_{k=-\infty}^{\infty} \int_{k T}^{(k+1) T} x(t) \phi_{k}^{*}(t) d t \\
& =\int_{-\infty}^{\infty} x(t) \phi_{k}^{*}(t) d t
\end{aligned}
$$

Therefore, $\phi_{k}^{*}(t)$ is the function $f(t)$ we are looking for.

EHB 252E - Homework 4

Due 25.04.2013

1. Suppose that for an LTI system, if we input $x(n)=3^{-n} u(n)$, the output is $y(n)=$ $4^{-n} u(n)$.
(a) Find a difference equation that relates the input and the output of this system.
(b) Find the impulse response of this system.

Solution. (a) Notice that

$$
\delta(n)=x(n)-\frac{1}{3} x(n-1)
$$

Similarly, we can write

$$
\delta(n)=y(n)-\frac{1}{4} y(n-1)
$$

Equating the left hand sides of these equations, we obtain,

$$
y(n)-\frac{1}{4} y(n-1)=x(n)-\frac{1}{3} x(n-1)
$$

(b) Taking the DTFT of the difference equation above, we obtain the frequency response of the system as,

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)} \\
& =\frac{1-\frac{1}{3} e^{-j \omega}}{1-\frac{1}{4} e^{-j \omega}} \\
& =1-\frac{\frac{1}{12} e^{-j \omega}}{1-\frac{1}{4} e^{-j \omega}}
\end{aligned}
$$

Thus, the impulse response is

$$
h(n)=\delta(n)-\frac{1}{12} 4^{-(n-1)} u(n-1)
$$

2. Suppose that the input $x(n)$ and the output $y(n)$ of a causal LTI system satisfy the difference equation

$$
y(n)-\frac{1}{4} y(n-1)=x(n)-x(n-1)
$$

Find the output if we input $x(n)=(1 / 2)^{n} u(n)$ to the system.
Solution. Taking the DTFT of both sides of the difference equation, we obtain,

$$
Y\left(e^{j \omega}\right)\left(1-\frac{1}{4} e^{-j \omega}\right)=X\left(e^{j \omega}\right)\left(1-e^{-j \omega}\right)
$$

Now, for $x(n)=(1 / 2)^{n} u(n)$, we have,

$$
X\left(e^{j \omega}\right)=\frac{1}{1-\frac{1}{2} e^{-j \omega}}
$$

Therefore,

$$
\begin{aligned}
Y\left(e^{j \omega}\right) & =\frac{1-e^{-j \omega}}{\left(1-\frac{1}{2} e^{-j \omega}\right)\left(1-\frac{1}{4} e^{-j \omega}\right)} \\
& =\frac{3}{1-\frac{1}{4} e^{-j \omega}}-\frac{2}{1-\frac{1}{2} e^{-j \omega}}
\end{aligned}
$$

We recognize the inverse DTFT of this as,

$$
y(n)=3\left(\frac{1}{4}\right)^{n} u(n)-2\left(\frac{1}{2}\right)^{n} u(n)
$$

3. (Derived from our book) We are given a discrete-time LTI system whose input $x(n)$ and output $y(n)$ are related by the pair of equations

$$
\begin{aligned}
y(n)+\frac{1}{4} y(n-1)+z(n)+\frac{1}{2} z(n-1) & =\frac{2}{3} x(n) \\
y(n)-\frac{5}{4} y(n-1)+z(n)-z(n-2) & =x(n),
\end{aligned}
$$

where $z(n)$ denotes an intermediate signal. Find a single difference equation that relates $y(n)$ to $x(n)$.

Solution. Taking the DTFT of the first equation, we obtain,

$$
Y\left(e^{j \omega}\right)\left(1+\frac{1}{4} e^{-j \omega}\right)+Z\left(e^{j \omega}\right)\left(1+\frac{1}{2} e^{-j \omega}\right)=\frac{2}{3} X\left(e^{j \omega}\right)
$$

Rearranging, we have,

$$
Z\left(e^{j \omega}\right)=\frac{1}{1+\frac{1}{2} e^{-j \omega}}\left[\frac{2}{3} X\left(e^{j \omega}\right)-Y\left(e^{j \omega}\right)\left(1+\frac{1}{4} e^{-j \omega}\right)\right]
$$

Similarly, taking the DTFT of the second given equation and rearranging, we have,

$$
Z\left(e^{j \omega}\right)=\frac{1}{1-e^{-j \omega}}\left[X\left(e^{j \omega}\right)-Y\left(e^{j \omega}\right)\left(1-\frac{5}{4} e^{-j \omega}\right)\right]
$$

Now equating the last two equations, we obtain,

$$
\begin{aligned}
\left(1-e^{-j \omega}\right)\left[\frac{2}{3} X\left(e^{j \omega}\right)-Y\left(e^{j \omega}\right)\right. & \left.\left(1+\frac{1}{4} e^{-j \omega}\right)\right] \\
& =\left(1+\frac{1}{2} e^{-j \omega}\right)\left[X\left(e^{j \omega}\right)-Y\left(e^{j \omega}\right)\left(1-\frac{5}{4} e^{-j \omega}\right)\right]
\end{aligned}
$$

Taking the inverse DTFT, we obtain,

$$
\begin{aligned}
\frac{2}{3}(x(n)-x(n-1))- & \left(y(n)-\frac{3}{4} y(n-1)-\frac{1}{4} y(n-2)\right) \\
& =x(n)+\frac{1}{2} x(n-1)-\left(y(n)-\frac{3}{4} y(n-1)-\frac{5}{8} y(n-2)\right) .
\end{aligned}
$$

Rearranging,

$$
\frac{3}{8} y(n-2)=-\frac{1}{3} x(n)-\frac{7}{6} x(n-1)
$$

Or,

$$
y(n)=-\frac{8}{9} x(n+2)-\frac{28}{9} x(n+1)
$$

EHB 252E - Signals and Systems (CRN : 21012)
Midterm Examination I
21.03.2013

4 Questions, 100 Minutes
Please Show Your Work for Full Credit!
(25 pts) 1. (a) Let $f(t)$ be the continuous-time signal given as

$$
f(t)= \begin{cases}0, & \text { for } t \leq-1 \\ 1, & \text { for }-1<t \leq 0 \\ 1-t, & \text { for } 0<t \leq 1 \\ 0, & \text { for } 1 \geq t\end{cases}
$$

Sketch (i) $f(t)$, (ii) $f(-t)$, (iii) $f(1.5 t)$.
(b) Let $g(n)$ be the discrete-time signal given as

$$
g(n)= \begin{cases}|n|, & \text { for }-2 \leq n \leq 2, \\ 0, & \text { for } 2<|n|\end{cases}
$$

Sketch (i) $g(n)$, (ii) $g(n-2)$, (iii) $g(2 n)$.
(25 pts) 2. Consider the system S given below.

Suppose that the systems S_{1}, S_{2}, S_{3} are linear time-invariant with impulse responses given as

$$
\begin{aligned}
& h_{1}(t)=u(t)-u(t-2), \\
& h_{2}(t)=u(t)-u(t-1), \\
& h_{3}(t)=\delta(t-1),
\end{aligned}
$$

where $u(t)$ is the unit step function defined as

$$
u(t)= \begin{cases}1, & \text { if } 0 \leq t, \\ 0, & \text { if } t<0\end{cases}
$$

(a) Sketch $h_{1}(t), h_{2}(t), h_{3}(t)$.
(b) Determine the output if we input $x(t)=1$ to the system.
(c) Determine the impulse response of the system S.
(25 pts) 3. Let T be a linear discrete-time system. Suppose that, for an integer value of k, if we input $\delta(n-k)$ to T, the output is

$$
y_{k}(n)=k(\delta(n-k)+\delta(n-k-1))
$$

(a) Determine and sketch the output if we input $x_{1}(n)=2 \delta(n-1)$ to the system.
(b) Determine and sketch the output if we input $x_{2}(n)=u(n-3)-u(n)$ to the system.
(25 pts) 4. Let T be a linear time-invariant (LTI) system. Also, suppose that, if we input $x(t)=e^{j \omega t}$ to T, we observe at the output $y(t)=H(\omega) e^{j \omega t}$, where $H(\omega)=1 /|\omega|^{2}$.
(a) Suppose we input $x_{1}(t)=\cos (\pi t)$ to T. Determine the output $y_{1}(t)$.
(b) Suppose we input $x_{2}(t)=2 \sin (2 \pi t)$ to T. Determine the output $y_{2}(t)$.
(25 pts) 1. (a) Let $f(t)$ be a continuous-time signal given as $f(t)=e^{-s t} u(t)$, where s is a positive real number and $u(t)$ is the continuous-time unit step signal. Find $F(\omega)$, the Fourier transform of $f(t)$.
(b) Let S be a continuous-time, causal, linear time-invariant (LTI) system whose input $x(t)$ and output $y(t)$ satisfy the following differential equation :

$$
y^{\prime}(t)+\pi y(t)=2 x(t) .
$$

(i) Find $H(\omega)$, the frequency response of S.
(ii) Find $h(t)$, the impulse response of S.
(25 pts) 2. Let $x(n)$ be a discrete-time signal whose discrete-time Fourier transform (DTFT) is given by

$$
X\left(e^{j \omega}\right)= \begin{cases}1, & \text { if }|\omega| \leq B \\ 0, & \text { if } B<|\omega| \leq \pi\end{cases}
$$

(a) Sketch $X\left(e^{j \omega}\right)$, for $|\omega| \leq \pi$.
(b) Find $x(n)$.
(c) Let $y(n)$ be a discrete-time signal given as,

$$
y(n)= \begin{cases}\frac{\sin \left(\frac{\pi}{2} n\right)}{n}, & \text { for } n \neq 0, \\ \frac{\pi}{2}, & \text { for } n=0\end{cases}
$$

Find $Y\left(e^{j \omega}\right)$, the DTFT of $y(n)$.
(d) Compute

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}
$$

(Hint: You can make use of $y(n)$.)
(25 pts) 3. Let $x(n)$ be a discrete-time signal given as,

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)-\left(\frac{1}{3}\right)^{n} u(n),
$$

where $u(n)$ denotes the discrete-time unit step signal.
(a) Find $X\left(e^{j \omega}\right)$, the discrete-time Fourier transform (DTFT) of $x(n)$.
(b) Find a discrete-time signal $h(n)$ such that

$$
x(n) * h(n)=\delta(n),
$$

where $\delta(n)$ denotes the discrete-time impulse signal.
(25 pts) 4. Let $h(t)$ be a continuous-time signal of the form

$$
h(t)=\sum_{k=-\infty}^{\infty} a_{k} z(t-2 k),
$$

where $z(t)$ is defined as,

$$
z(t)=u(t+1)-u(t-1) .
$$

Here, $u(t)$ denotes the continuous-time unit step signal. Suppose we form the discrete-time signal $y(n)$ by sampling $h(t)$ with a period equal to $T=2$. That is, $y(n)=h(2 n)$ for any integer n. Suppose also that the DTFT of $y(n)$ is given as,

$$
Y\left(e^{j \omega}\right)=2+2 \cos (\omega)-j \sin (2 \omega)
$$

(a) Sketch $z(t)$.
(b) Determine and sketch $y(n)$.
(c) Determine and sketch $h(t)$.

EHB 252E - Signals and Systems
(CRN : 21012, Instructor : İlker Bayram)
Final Examination
27.05.2013

5 Questions, 120 Minutes
Please Show Your Work for Full Credit!
(15 pts) 1. Let $g(t)$ be a continuous-time signal defined as,

$$
g(t)= \begin{cases}2+2 t, & \text { for }-1<t \leq 0 \\ 2-2 t, & \text { for } 0<t \leq 1 \\ 0, & \text { for } 1 \leq|t|\end{cases}
$$

(a) Sketch $g(t)$.
(b) Let $h(t)=g(t) * g(t)$. Evaluate

$$
c=\int_{-\infty}^{\infty} h(t) d t
$$

(20 pts) 2. Let S be a time-invariant system that maps a discrete-time signal x to a discrete-time signal y. Also let,

$$
y(0)=2 x(-1)-x(0)+3 x(1),
$$

for any input $x(n)$. Suppose $x(n)=\left(\frac{1}{2}\right)^{n} u(n)$ is input to the system.
(a) Find $y(0)$.
(b) Find $y(3)$.
(25 pts) 3. Let $f(t)$ be a periodic signal with period equal to $T=2$, and

$$
f(t)= \begin{cases}0, & \text { for }-1 \leq t<0 \\ 1, & \text { for } 0 \leq t \leq \frac{1}{2} \\ 0, & \text { for } \frac{1}{2}<t \leq 1\end{cases}
$$

Since $f(t)$ is periodic with $T=2$, it has a Fourier series representation

$$
f(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{-j \pi k}
$$

for some a_{k}.
(a) Find a_{0}.
(b) Find a_{k} for $k \neq 0$.
(c) Let

$$
y(t)=\int_{-1}^{1} f(\tau) f(t-\tau) d \tau
$$

Observe that $y(t)$ is also periodic with $T=2$. Therefore,

$$
y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{-j \pi k}
$$

for some b_{k}. Find b_{k}.
(25 pts) 4. Let $f(t)$ be a continuous-time signal whose Fourier transform is given as,

$$
H(\omega)= \begin{cases}1, & \text { for }|\omega|<\frac{4 \pi}{3}, \\ 0, & \text { for }|\omega| \geq \frac{4 \pi}{3} .\end{cases}
$$

Suppose we form the discrete-time signal $y(n)$ by sampling $f(t)$ with a period equal to $T=1$. That is, $y(n)=f(n)$ for any integer n. Also let $Y\left(e^{j \omega}\right)$ denote the DTFT of $y(n)$.
(a) Determine and sketch $Y\left(e^{j \omega}\right)$ for $|\omega| \leq \pi$.
(b) Let $h(t)=f(t) e^{j \pi t}$. Also suppose we form the discrete-time signal $z(n)$ by sampling $h(t)$ with a period equal to $T=1$. That is, $z(n)=h(n)$ for any integer n. Determine and sketch $Z\left(e^{j \omega}\right)$, the DTFT of $z(n)$, for $|\omega| \leq \pi$.
(15 pts) 5. Let $x(n)$ be a discrete-time signal defined as

$$
x(n)=\left(\frac{1}{2}\right)^{n} u(n)+\left(\frac{1}{4}\right)^{n} u(n),
$$

where $u(n)$ denotes the discrete-time unit step signal. Also let $X(z)$ denote the z-transform of the signal.
(a) Determine $X(z)$.
(b) Find the poles and zeros of $X(z)$.
(c) Specify the region of convergence (ROC) of $X(z)$.

