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Penalty Functions Derived From Monotone
Mappings

İlker Bayram

Abstract—We consider the problem of constructing a penalty
function associated with a given monotone function. We provide a
construction that allows the monotone function to be discontinu-
ous or bounded. We show that, although the penalty may be non-
convex, it is weakly convex. We briefly discuss the implications
for iterative solutions of linear inverse problems.

Index Terms—Monotone denoising operator, nonconvex
penalty, weakly convex, hard threshold

I. INTRODUCTION

We consider functions T : R→ R associated with denoising
problems of the form,

T (y) = argmin
x

1

2
(x− y)2 + P (x), (1)

where P is a penalty function. Although T is derived from
the penalty function P in this description, monotone functions
with desirable properties can be defined independently and
utilized in iterative algorithms that solve more complicated
problems [1]–[4]. Therefore, it is also of interest to start
from a monotone function and find the associated penalty
function and/or its derivative (since some iterative algorithms
[5] require the derivative of the cost). In this letter, we consider
such a construction.

This problem has been considered in [3], [6]. However, both
papers impose certain conditions on the monotone mappings
involved. Thm. 1 in [3] requires that the monotone mapping
be continuous and Prop. 3.2 in [6] requires that the mono-
tone mapping increase indefinitely (for the positive reals),
while being bounded by the identity mappping. Nevertheless,
both papers contain complementary properties of the penalty
functions. Here, we do not impose any condition other than
monotonicity. By extending the monotone functions to max-
imal monotone mappings, we show that the constructions in
[3], [6] (which actually obtain equivalent penalties through
alternative routes) can be generalized to handle arbitrary
monotone functions.

In Section II, we describe a construction that proves the
following proposition.

Proposition 1. Let T : R → R be a non-decreasing,
non-constant function with at most a countable number of
discontinuities. Then, there exists a function P (x) such that

(i) Q(x) = 1
2x

2 + P (x) is convex,
(ii) T (y) ∈ argminx

1
2 (x− y)2 + P (x).
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Note that the proposition does not require T to be contin-
uous. If it is, then Q in (i) can be shown to have a unique
minimum and the inclusion in (ii) becomes an equality.

When P is convex, T is also called the proximity operator
(or proximal mapping) of P [7], [8]. Proximal mappings are of
interest not merely in denoising problems. They also arise in
iterative algorithms that solve more complicated linear inverse
problems [7]. However, we would like to point out that the
induced penalty function P constructed in this letter may be
non-convex. Non-convexity of P becomes crucial [2], [3], [6],
[9], [10] if one wants a monotone mapping that converges to
the identity (which implies unbiasedness in a certain context).
Although P is not convex, if we add a quadratic as x2/2,
the sum becomes convex. Such functions are called weakly-
convex (in fact, ρ-convex with ρ = −1/2, according to [11]).
Therefore, Prop. 1 implies that, to come up with a given
monotone denoising function, one may restrict attention to
weakly convex penalty functions. This is an interesting remark
because usually, the hard threshold is associated with the `0
count [1], [3], which is not weakly convex. Another recent
example is the log-threshold introduced in [4] derived from
the local minima of a denoising problem using a non-convex
symmetric penalty function. According to our proposition,
there exist weakly-convex penalty functions that give the same
threshold functions.

II. CONSTRUCTION OF THE PENALTY

In the following, we give a constructive proof for Prop. 1
along with some discussion. We start with an outline. Then,
the main proof is provided in Sec. II-B, followed by supple-
mentary discussion subsections.

A. Outline

To set the stage, let us start with a definition from convex
analysis. For detailed discussions of concepts from convex
analysis and monotone operator theory we refer to [8], [12],
[13].

Definition 1. Let f : R → R be a convex function. The
subdifferential of f at x is denoted by ∂f(x) and is the set of
y ∈ R that satisfy

f(x) + (z − x) y ≤ f(z), (2)

for all z ∈ R.

Note that we can regard ∂f as a set valued mapping (i.e.,
∂f : R → 2R). It follows from this definition that x∗ is a



2

minimizer of f if and only if 0 ∈ ∂f(x∗). Consider now the
cost function in (1). Note that we can write it as,

h(x) =
1

2
x2 + P (x)
︸ ︷︷ ︸

Q(x)

−x y + 1

2
y2. (3)

If Q(x) is convex, we can therefore write

0 ∈ −y + ∂Q(x∗), (4)

where x∗ = T (y) is a minimizer. Therefore, we have, formally,

T (y) ∈ (∂Q)−1(y). (5)

If Q were strictly convex and differentiable, then (5) would
actually be an equality of the form T = (∂Q)−1. This suggests
that Q can be obtained from T by considering the anti-
derivative of T−1. Then, P can be obtained by subtracting
x2/2 from Q. However, if Q is not strictly convex and
differentiable, the plan above does not work. In such a case,
T might have discontinuities, or may be bounded. As we
demonstrate below, discontinuities in T will lead to gaps
in T−1, preventing integration. When T is bounded as in a
tanh function, T−1 is again not defined everywhere on R. In
order to handle such monotone mappings as well, our plan
is to first extend the given monotone function to a maximal
monotone mapping. Then we will take the inverse of the
resulting mapping and integrate to obtain the sum of our
penalty function and x2/2.

B. Inverting the Monotone Mapping (Proof of Prop. 1)

In this subsection, we provide a constructive proof for
Prop. 1. Proofs of Prop. 2 and Prop. 5 can be found in [8]
(Chp. 12) or [13] (Chp. 20). The proofs of the remaining
propositions are provided in the supplementary material.

A concept we will rely on is the graph of a set-valued
mapping. In the following, let M : R → 2R be a generic
set-valued mapping.

Definition 2. The graph of M , denoted as gra M , is the set
of pairs (x, y) such that y ∈M(x).

Note that the graph of M can also be used to define M .
We can therefore think of M and its graph as describing the
same object.

Definition 3. M is said to be monotone if for any (x, y) ∈
graM , (x′, y′) ∈ graM with x < x′, we have y ≤ y′.

According to this definition, any monotone function on R
can be associated with a monotone set-valued mapping. In the
following, with an abuse of language, we will therefore talk
about the graph of a monotone function. An example of a
monotone mapping is the hard threshold, defined as,

T (x) =

{
0, if |x| ≤ τ,
x, if τ < |x|, (6)

where τ is a constant.
In going from the threshold function to the penalty, we need

some sort of an inversion, per (5). In [3], this is achieved by a
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1
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A concept we will rely on is the graph of a set-valued
mapping. In the following, let M : R ! 2R be a generic
set-valued mapping.

Definition 2. The graph of M , denoted as gra M is the set
of pairs (x, y) such that y 2 M(x).

Note that the graph of M can also be used to define M .
We can therefore think of M and its graph as describing the
same object.

Definition 3. M is said to be monotone if for any (x, y) 2
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According to this definition, any monotone function on R
can be associated with a monotone set-valued mapping. In the
following, with an abuse of language, we will therefore talk
about the graph of a monotone function. An example of a
monotone mapping is the hard threshold, defined as,

T (x) =

(
0, if |x|  ⌧,

x, if ⌧ < |x|, (6)

where ⌧ is a constant.
In going from the threshold function to the penalty, we need

some sort of an inversion, per (5). In [3], this is achieved by a
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Fig. 1. (a) The hard threshold function with ⌧ = 1. (b) The inverse of the hard
threshold function as a set valued mapping. (c) Maximal monotone extension
of the hard threshold function. (d) The inverse of the mapping in (c).

convex conjugation operation. Here, we will make use of the
inverse monotone mapping.

Definition 4. The inverse of M , denoted as M�1 is the set
valued mapping whose graph consist of pairs (x, y) such that
x 2 M(y).

Proposition 2. M is monotone if and only if M�1 is
monotone.

The graphs of the hard threshold and its inverse are shown in
Fig.1a,b. Observe that, regarded as set valued mappings, both
the hard threshold and its inverse are monotone. However, the
inverse of the hard threshold is not defined for 0 < |x|  ⌧ ,
although it is defined for ⌧ < |x|. This prevents integration,
which is required to pass to the function Q. We will see that
this issue does not arise if the monotone mapping is maximal.

Definition 5. A monotone mapping M is said to be maximally
monotone if there exists no monotone mapping M 0 whose
graph is a proper superset of gra M .

For the monotone functions we are interested in, an equiv-
alent condition for maximality is given in the following.

Proposition 3. Let M : R ! 2R be monotone, non-constant
and M(x) be non-empty for all x 2 R. Also, let M�, M+

denote the extremal values of M , defined as,

M� = lim
x!�1

�
inf M(x)

�
, M+ = lim

x!1

�
sup M(x)

�
. (7)

In this setting, M is maximal if and only if
(i) for any x, M(x) is a finite closed interval,

and
(ii) for any y with M� < y < M+, there exists x such that

y 2 M(x).

Condition (ii) in Prop. 3 essentially implies that if a maximal
monotone M has values below and above y then we can find
an x with y 2 M(x) – moreover the converse (given the
further condition in (i)) also holds. This result is useful for

Fig. 1. (a) The hard threshold function with τ = 1. (b) The inverse of the hard
threshold function as a set valued mapping. (c) Maximal monotone extension
of the hard threshold function. (d) The inverse of the mapping in (c).

convex conjugation operation. Here, we will make use of the
inverse monotone mapping.

Definition 4. The inverse of M , denoted as M−1 is the set
valued mapping whose graph consist of pairs (x, y) such that
x ∈M(y).

Proposition 2. M is monotone if and only if M−1 is
monotone.

The graphs of the hard threshold and its inverse are shown in
Fig.1a,b. Observe that, regarded as set valued mappings, both
the hard threshold and its inverse are monotone. However, the
inverse of the hard threshold is not defined for 0 < |x| ≤ τ ,
although it is defined for τ < |x|. This prevents integration,
which is required to pass to the function Q. We will see that
this issue does not arise if the monotone mapping is maximal.

Definition 5. A monotone mapping M is said to be maximally
monotone if there exists no monotone mapping M ′ whose
graph is a proper superset of graM .

For the monotone functions we are interested in, an equiv-
alent condition for maximality is given in the following.

Proposition 3. Let M : R → 2R be monotone, non-constant
and M(x) be non-empty for all x ∈ R. Also, let M−, M+

denote the extremal values of M , defined as,

M− = lim
x→−∞

(
infM(x)

)
, M+ = lim

x→∞

(
supM(x)

)
. (7)

In this setting, M is maximal if and only if

(i) for any x, M(x) is a finite closed interval,
and

(ii) for any y with M− < y < M+, there exists x such that
y ∈M(x).

Condition (ii) in Prop. 3 essentially implies that if a maximal
monotone M has values below and above y then we can find
an x with y ∈ M(x) – moreover the converse (given the
further condition in (i)) also holds. This result is useful for
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finding maximal monotone extensions of monotone functions
considered in the letter and also checking maximality.

The hard threshold is not maximally monotone, because it
violates condition (ii) of Prop. 3. T assumes the values −τ
and τ , but there is no x such that τ/2 ∈ T (x). Note that, in
this case, the discontinuity at τ prevents maximality. In fact,
we obtain maximal monotone extensions by filling in these
jumps.

In general, there may exist more than one maximal exten-
sion of a monotone mapping [13]. However, in our setup,
where we consider maximal extensions of monotone (single-
valued) functions, the extension is unique.

Proposition 4. Suppose M is a single valued monotone
function, defined everywhere and discontinuous on at most a
countable number of points, collected in the set J . For x ∈ J ,
let I−x and I+x denote the limit inferior and superior at x
defined as,

I−x = lim inf
z→x

M(z), I+x = lim sup
z→x

M(z), (8)

and set Vx to be the set of pairs (x, y) such that I−x ≤ y ≤ I+x .
Now let M̃ be defined such that

gra M̃ =
(
gra M

)
∪
(⋃

x∈J
Vx

)
. (9)

Then M̃ is the unique maximal monotone mapping whose
graph contains the graph of M .

If we apply the construction in Prop. (4) to the hard
threshold, we end up with the maximal monotone mapping
shown in Fig. 1c. Let us now consider the properties of the
inverse of a maximal monotone operator.

Proposition 5. M is maximal monotone if and only if M−1

is maximal monotone.

Proposition 6. Suppose M is maximal monotone and M(x)
is non-empty for all x. Then there exists an interval I such
that M−1(x) is non-empty if x ∈ I and empty if x /∈ I .

This proposition ensures that for x < t < x′, if M−1(x) and
M−1(x′) are both non-empty, then M−1(t) is non-empty too.
This is demonstrated by the inverse of the maximal extension
of the hard threshold (see Fig. 1d). Observe that the region
0 < |x| < τ is now filled.

It is well known that if M is a maximal monotone mapping
on R, then there is a convex lower semicontinuous proper
function f such that M = ∂f [8], [13]. Further, we can obtain
f from ∂f up to a constant. Given a pair (x0, y0) with y0 ∈
∂f(x0), f(x) can be written (up to a constant) as [8], [13]

f(x) = sup
m

sup
x1,...,xm
y1,...ym

ym (x−xm)+

m−1∑

i=0

yi(xi+1−xi), (10)

where yi ∈ ∂f(xi). This definition chooses the unknown
constant in the definition of f such that f(x0) = 0.

Recalling the discussion in Sec. II-A, suppose now that T̃−1

denotes the inverse of the maximal extension of T . By Prop. 5,
T̃−1 is maximal monotone. So we can find a convex function
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Fig. 2. (a) The penalty function associated with the hard threshold. (b) The
generalized gradient of the penalty in (a).

Q whose subdifferential is eT�1. Also, for a given y, let z =
T (y). Then, we will have that z 2 eT (y) since eT is an extension
of T . But this means that y 2 eT�1(z) = @Q(z). Equivalently,
0 2 @Q(z) � y, which in turn is equivalent to

z 2 arg min
x

Q(x) � x y (11a)

= arg min
x

1

2
(x � y)2 +

�
Q(x) � x2/2

�
. (11b)

Thus for Q with @Q = eT�1, obtained via (10), we can set
P (x) = Q(x) � x2/2, proving Prop. 1.

While (10) applies for a general convex function, here,
our maximal monotone operators are defined on R and an
integration procedure that is easier to realize can be given
(see also [3] for a similar procedure).

C. Integration of a Maximal Monotone Mapping on R
By Prop. 6, we know that there is an interval I on which

eT�1(x) is non-empty. Let J ⇢ I be the set of x where eT�1(x)
is not a singleton. For threshold functions useful in practice, J
is at most a finite set and we will work under this assumption.
We start by setting Q(x) = 1 if x is not in the closure of I .
Now pick x�, x+ from J such that (x�, x+)\J = ;. On the
interval (x�, x+), eT�1 is single-valued and its antiderivative
determines Q up to a constant, since @Q = eT�1. Therefore,
Q is determined up to a constant for a finite collection of
intervals which partition I . We choose the constant in each
interval so that the resulting Q is continuous in the interior of
I . We extend Q on the boundaries of I by continuity. Once
we obtain Q, we subtract x2/2 to obtain the penalty function,
P .

If we apply this procedure to the inverse of the maximal
monotone hard threshold (Fig. 1d), then the resulting penalty
function is (as is noted in [9], [10]),

P (x) =

(
⌧ |x| � x2/2, if |x|  ⌧,

⌧2/2, if ⌧ < |x|. (12)

This penalty is sketched in Fig. 2a. This P makes h in (3)
convex, but not strictly convex. When y = ±⌧ , the minimum
of h occurs at ±[0, ⌧ ].

D. Derivative of the Penalty Function

We noted in the introduction that it is also of interest to
find the derivative of the penalty. For the penalty function
of interest, since Q(x) = P (x) + x2/2, we can formally
write @P (x) = @Q(x) � x. For the hard threshold, @P is
sketched in Fig. 2b. When Q is smooth, @P is the derivative
of the penalty function. However, if Q is not smooth (as in

Fig. 2. (a) The penalty function associated with the hard threshold. (b) The
generalized gradient of the penalty in (a).

Q whose subdifferential is T̃−1. Also, for a given y, let z =
T (y). Then, we will have that z ∈ T̃ (y) since T̃ is an extension
of T . But this means that y ∈ T̃−1(z) = ∂Q(z). Equivalently,
0 ∈ ∂Q(z)− y, which in turn is equivalent to

z ∈ argmin
x

Q(x)− x y (11a)

= argmin
x

1

2
(x− y)2 +

(
Q(x)− x2/2

)
. (11b)

Thus for Q with ∂Q = T̃−1, obtained via (10), we can set
P (x) = Q(x)− x2/2, proving Prop. 1.

While (10) applies for a general convex function, here,
our maximal monotone operators are defined on R and an
integration procedure that is easier to realize can be given
(see also [3] for a similar procedure).

C. Integration of a Maximal Monotone Mapping on R
By Prop. 6, we know that there is an interval I on which

T̃−1(x) is non-empty. Let J ⊂ I be the set of x where T̃−1(x)
is not a singleton. For threshold functions useful in practice, J
is at most a finite set and we will work under this assumption.
We start by setting Q(x) =∞ if x is not in the closure of I .
Now pick x−, x+ from J such that (x−, x+)∩J = ∅. On the
interval (x−, x+), T̃−1 is single-valued and its antiderivative
determines Q up to a constant, since ∂Q = T̃−1. Therefore,
Q is determined up to a constant for a finite collection of
intervals which partition I . We choose the constant in each
interval so that the resulting Q is continuous in the interior of
I . We extend Q on the boundaries of I by continuity. Once
we obtain Q, we subtract x2/2 to obtain the penalty function,
P .

If we apply this procedure to the inverse of the maximal
monotone hard threshold (Fig. 1d), then the resulting penalty
function is (as is noted in [9], [10]),

P (x) =

{
τ |x| − x2/2, if |x| ≤ τ,
τ2/2, if τ < |x|. (12)

This penalty is sketched in Fig. 2a. This P makes h in (3)
convex, but not strictly convex. When y = ±τ , the minimum
of h occurs at ±[0, τ ].

D. Derivative of the Penalty Function

We noted in the introduction that it is also of interest to
find the derivative of the penalty. For the penalty function
of interest, since Q(x) = P (x) + x2/2, we can formally
write ∂P (x) = ∂Q(x) − x. For the hard threshold, ∂P is
sketched in Fig. 2b. When Q is smooth, ∂P is the derivative
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of the penalty function. However, if Q is not smooth (as in
the hard threshold), ∂P is not necessarily a subdifferential
in the sense of Defn. 1 above. In particular, we observe that
∂P is not monotone for the hard threshold, signalling that
it is not associated with a convex function. When ∂P is not
smooth, under certain Lipschitz conditions, it coincides with
the generalized derivative in [14] or the generalizations of the
subdifferential that can be found in [8] (see e.g. Chp 8).

III. EXAMPLES

We demonstrate the procedure on two more examples. But
before that, let us note a point useful in computations.

Suppose T is a monotone function. In order to obtain the
associated penalty, we need to integrate T−1. If it is easier to
integrate T (x), a useful equality is,

∫ b

a

T−1(x) dx = xT−1(x)
∣∣∣
b

a
−
∫ T−1(b)

T−1(a)

T (x) dx. (13)

Example 1 (Hyperbolic Tangent). We construct the penalty
function associated with the monotone mapping

Tα(x) = tanh(αx) =
eαx − e−αx
eαx + e−αx

. (14)

Tα(x) is shown in Fig. 3a, for α = 5, 15. With increasing α,
Tα(x) converges to the sgn function, which can be interpreted
as a binary classifier of the input. Note that, Tα(x) is maximal,
by the criterion in Prop. 3. We find,

T−1α (x) = ln (sα(x)) , for − 1 < x < 1, (15)

where,

sα(x) =

(
1 + x

1− x

)1/2α

. (16)

Because |Tα(x)| < 1 for all x, T−1α (x) is constrained to the
interval I = (−1, 1). Outside the closure of this interval, we
set Qα(x) = ∞, as required by the construction. On I , we
first set Qα(0) = 0. Then, using (13), we find,

Qα(x) =

∫ x

0

T−1α (u) du (17)

= x ln
(
sα(x)

)
− ln

(
sα(x)− 1/sα(x)

)
, (18)

for 0 < x < 1. We extend Qα(x) to (−1, 0) by symmetry.
Note that limx→1Qα(x) =∞. Finally, we obtain the penalty
function as Pα(x) = Qα(x)−x2/2. Pα(x) is shown in Fig. 3b
for α = 5, 15. With increasing α, Pα(x) gets closer to P (x) =
−x2 on |x| ≤ 1. We note that P (x) is the penalty associated
with the sgn function (which can be derived independently
following the procedure in this letter). Notice also that for
fixed α, since limx→1 Pα(x) = ∞, convergence of Pα(x) to
P (x) is not uniform but pointwise for |x| < 1.

Example 2 (Log Threshold). In a final example, we consider
the threshold function from [4], given by,

T (x) =





0, if |x| ≤ τ,
1
2 sgn(x)

(
(|x| − δ)

+
√

(|x|+ δ)2 − 2λ

)
, if τ < |x|,

(19)
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the hard threshold), @P is not necessarily a subdifferential
in the sense of Defn. 1 above. In particular, we observe that
@P is not monotone for the hard threshold, signalling that
it is not associated with a convex function. When @P is not
smooth, under certain Lipschitz conditions, it coincides with
the generalized derivative in [14] or the generalizations of the
subdifferential that can be found in [8] (see e.g. Chp 8).

III. EXAMPLES

We demonstrate the procedure on two more examples. But
before that, let us note a point useful in computations.

Suppose T is a monotone function. In order to obtain the
associated penalty, we need to integrate T�1. If it is easier to
integrate T (x), a useful equality is,

Z b

a

T�1(x) dx = x T�1(x)
���
b

a
�
Z T�1(b)

T�1(a)

T (x) dx. (13)

Example 1 (Hyperbolic Tangent). We construct the penalty
function associated with the monotone mapping

T↵(x) = tanh(↵x) =
e↵ x � e�↵ x

e↵ x + e�↵ x
. (14)

T↵(x) is shown in Fig. 3a, for ↵ = 5, 15. With increasing ↵,
T↵(x) converges to the sgn function, which can be interpreted
as a binary classifier of the input. Note that, T↵(x) is maximal,
by the criterion in Prop. 3. We find,

T�1
↵ (x) = ln (s↵(x)) , for � 1 < x < 1, (15)

where,

s↵(x) =

✓
1 + x

1 � x

◆1/2↵

. (16)

Because |T↵(x)| < 1 for all x, T�1
↵ (x) is constrained to the

interval I = (�1, 1). Outside the closure of this interval, we
set Q↵(x) = 1, as required by the construction. On I , we
first set Q↵(0) = 0. Then, using (13), we find,

Q↵(x) =

Z x

0

T�1
↵ (u) du (17)

= x ln
⇣
s↵(x)

⌘
� ln

⇣
s↵(x) � 1/s↵(x)

⌘
, (18)

for 0 < x < 1. We extend Q↵(x) to (�1, 0) by symmetry.
Note that limx!1 Q↵(x) = 1. Finally, we obtain the penalty
function as P↵(x) = Q↵(x)�x2/2. P↵(x) is shown in Fig. 3b
for ↵ = 5, 15. With increasing ↵, P↵(x) gets closer to P (x) =
�x2 on |x|  1. We note that P (x) is the penalty associated
with the sgn function (which can be derived independently
following the procedure in this letter). Notice also that for
fixed ↵, since limx!1 P↵(x) = 1, convergence of P↵(x) to
P (x) is not uniform but pointwise for |x| < 1.

Example 2 (Log Threshold). In a final example, we consider
the threshold function from [4], given by,

T (x) =
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>>>><
>>>>:

0, if |x|  ⌧,

1
2 sgn(x)

✓
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Fig. 3. (a) Scaled hyperbolic tangent functions are monotone and concentrate
the input around -1 and 1. (b) The associated penalty favors points near �1
and 1. Outside the unit interval, the penalty assumes the value 1.
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Fig. 4. (a) The log-threshold in (19) with � = 1/2, � = 1/100. (b) The
associated penalty given in (20) for the threshold function in (a).

where ⌧ =
p

2� � �. This threshold function (see Fig. 4a)
is derived in [4] by considering a logarithmic penalty of the
form eP (x) = (�/2) ln(|x|+�). Note that the function h(x) =
(x � y)2/2 + eP (x) is not convex for small �. The authors in
[4] construct the threshold function above by considering the
local minima of the cost. However, since T (x) is monotone,
Prop. 1 suggests that there is a weakly convex function P (x)
associated with T (x). Following our procedure, we find that
the weakly convex function

P (x) =

8
<
:

⇣p
2�� �

⌘
|x| � x2/2, if |x| <

q
�
2 � �,

�
2 ln

�
|x| + �

�
+ c, if |x| �

q
�
2 � �,

(20)

leads to the threshold above. In (20), the constant c is chosen
so that P (x) is continuous (see Fig. 4b).

IV. DISCUSSION

Prop. 1 is also of interest for more general linear inverse
problems. In particular, if we have noisy data acquired under
linear distortion represented by an operator H , a widely used
reconstruction algorithm is of the form

xn+1 = T
⇣
xn + ↵HT (y � H xn)

⌘
, (21)

where T is a denoising operator [15]–[17]. If T is the proxim-
ity operator of a convex function [7], this algorithm becomes
an instance of a forward-backward splitting algorithm, which
is known to converge [13], [18]. However, many interesting
denoisers, like the hard threshold and the log-threshold, do
not satisfy such a requirement (see e.g. Prop. 1 in [2] or
Thm. 1 in [3]). In that case, Prop. 1 can be used to construct a
Lyapunov function [19] for the algorithm in (21), whose value
decreases monotonically with iterations. This may help prove
convergence of the iterations in (21).
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Fig. 3. (a) Scaled hyperbolic tangent functions are monotone and concentrate
the input around -1 and 1. (b) The associated penalty favors points near −1
and 1. Outside the unit interval, the penalty assumes the value ∞.
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smooth, under certain Lipschitz conditions, it coincides with
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Because |T↵(x)| < 1 for all x, T�1
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interval I = (�1, 1). Outside the closure of this interval, we
set Q↵(x) = 1, as required by the construction. On I , we
first set Q↵(0) = 0. Then, using (13), we find,
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= x ln
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s↵(x)

⌘
� ln
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⌘
, (18)

for 0 < x < 1. We extend Q↵(x) to (�1, 0) by symmetry.
Note that limx!1 Q↵(x) = 1. Finally, we obtain the penalty
function as P↵(x) = Q↵(x)�x2/2. P↵(x) is shown in Fig. 3b
for ↵ = 5, 15. With increasing ↵, P↵(x) gets closer to P (x) =
�x2 on |x|  1. We note that P (x) is the penalty associated
with the sgn function (which can be derived independently
following the procedure in this letter). Notice also that for
fixed ↵, since limx!1 P↵(x) = 1, convergence of P↵(x) to
P (x) is not uniform but pointwise for |x| < 1.

Example 2 (Log Threshold). In a final example, we consider
the threshold function from [4], given by,
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is derived in [4] by considering a logarithmic penalty of the
form eP (x) = (�/2) ln(|x|+�). Note that the function h(x) =
(x � y)2/2 + eP (x) is not convex for small �. The authors in
[4] construct the threshold function above by considering the
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leads to the threshold above. In (20), the constant c is chosen
so that P (x) is continuous (see Fig. 4b).

IV. DISCUSSION

Prop. 1 is also of interest for more general linear inverse
problems. In particular, if we have noisy data acquired under
linear distortion represented by an operator H , a widely used
reconstruction algorithm is of the form

xn+1 = T
⇣
xn + ↵HT (y � H xn)

⌘
, (21)

where T is a denoising operator [15]–[17]. If T is the proxim-
ity operator of a convex function [7], this algorithm becomes
an instance of a forward-backward splitting algorithm, which
is known to converge [13], [18]. However, many interesting
denoisers, like the hard threshold and the log-threshold, do
not satisfy such a requirement (see e.g. Prop. 1 in [2] or
Thm. 1 in [3]). In that case, Prop. 1 can be used to construct a
Lyapunov function [19] for the algorithm in (21), whose value
decreases monotonically with iterations. This may help prove
convergence of the iterations in (21).
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Fig. 4. (a) The log-threshold in (19) with λ = 1/2, δ = 1/100. (b) The
associated penalty given in (20) for the threshold function in (a).

where τ =
√
2λ − δ. This threshold function (see Fig. 4a)

is derived in [4] by considering a logarithmic penalty of the
form P̃ (x) = (λ/2) ln(|x|+δ). Note that the function h(x) =
(x− y)2/2 + P̃ (x) is not convex for small δ. The authors in
[4] construct the threshold function above by considering the
local minima of the cost. However, since T (x) is monotone,
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leads to the threshold above. In (20), the constant c is chosen
so that P (x) is continuous (see Fig. 4b).
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linear distortion represented by an operator H , a widely used
reconstruction algorithm is of the form
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)
, (21)

where T is a denoising operator [15]–[17]. If T is the proxim-
ity operator of a convex function [7], this algorithm becomes
an instance of a forward-backward splitting algorithm, which
is known to converge [13], [18]. However, many interesting
denoisers, like the hard threshold and the log-threshold, do
not satisfy such a requirement (see e.g. Prop. 1 in [2] or
Thm. 1 in [3]). In that case, Prop. 1 can be used to construct a
Lyapunov function [19] for the algorithm in (21), whose value
decreases monotonically with iterations. This may help prove
convergence of the iterations in (21).
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APPENDIX

In this supplementary material, we provide proofs of some
statements from Section II.

Proofs of Prop. 2 and Prop. 5 can be found in [8]
(Chp. 12) or [13] (Chp. 20). These propositions hold for
general monotone mappings. Below we provide the proofs of
the propositions that are valid for the monotone mappings we
are interested in.

Proof of Prop. 3. (⇒) We start by showing that (i) follows.
Assume that M is maximal monotone and M(x) is non-empty
for all x. Given x0 < x∗ < x1, let y0 ∈M(x0), y1 ∈M(x1)
(these exist because M(x) is non empty for all x). But by
monotonicity, y0 ≤ infM(x∗), and supM(x∗) ≤ y1, so that
M(x∗) is contained in a finite interval. Let us now show that
M(x∗) has to be also closed. Suppose on the contrary that
M(x∗) is not a closed interval. Let M ′ be defined by setting
M ′(x∗) to be the closed interval [infM(x∗), supM(x∗)] and
M ′(x) = M(x) for x 6= x∗. Note that if x∗ < x, then
supM(x∗) ≤ infM(x) and if x < x∗, then supM(x) ≤
infM(x∗). Combined with the monotonicity of M , this im-
plies that M ′(x) is monotone. But M ′(x∗) is a proper superset
of M(x∗) so that graM ′ is a proper superset of graM .
Thus, M cannot be maximal monotone, which contradicts
the assumption. Therefore M(x∗) has to be a closed interval
(possibly a singleton).

We now consider (ii). Assume that M is maximal monotone,
non-constant and M(x) is non-empty for all x. Suppose
however that (ii) does not hold. Then, for some y with
M− < y < M+, we have y /∈M(x) for any x. Now let,

x− = supx, subject to supM(x) < y,

x+ = inf x, subject to infM(x) > y.

Since M− < y < M+, we have −∞ < x− and x+ < ∞.
Further, by the monotonicity of M , we have x− ≤ x+. Now
let M ′ be defined such that

graM ′ = graM ∪
{(

(x− + x+)/2, y
)}
.

Then, M ′ is also monotone and graM ′ is a proper superset of
graM . But this contradicts the maximality of M . Therefore
we conclude that (ii) must hold.

(⇐) Assume now that (i) and (ii) hold, M is monotone, non-
constant and M(x) is non-empty for all x. Suppose, however,
that M is not maximal monotone. Since M is not maximal
monotone, we can find a monotone M ′ such that graM ′ is
a proper superset of graM . Therefore, we can find a pair
(x∗, y∗), such that y∗ ∈ M ′(x∗) but y∗ /∈ M(x∗). Since by
the assumptions, M(x∗) is a non-empty closed finite interval,
we will have either y∗ < minM(x∗) or y∗ > maxM(x∗).
Suppose y∗ < minM(x∗). Also, let ỹ = (y∗+minM(x∗))/2.
Note that, since M ′ is monotone, graM ′ ⊃ graM , and y∗ <
ỹ < minM(x∗), it follows that ỹ /∈ M(x) for any x. Then,
by (ii), we must have ỹ ≤ M−. Now pick x0 < x∗. Also,
let y0 ∈ M(x0). We should also have y0 ∈ M ′(x0). But
since M ′ is monotone, y0 ≤ y∗. Thus we obtain the chain of
inequalities M− ≤ y0 ≤ y∗ < ỹ ≤M− which cannot be true.
By a similar argument, we can obtain a contradiction for the
case y∗ > maxM(x∗). Therefore M has to be maximal.

Proof of Prop.4. Maximality of M̃ follows by Prop. 3.
We need to show that M̃ is unique. Suppose now that M ′

is another maximal extension of M , different than M̃ . Then,
we can find a pair (x∗, y∗) such that y∗ ∈ M ′(x∗) but y∗ /∈
M̃(x∗). Since M̃(x∗) is a closed interval (by Prop. 3), this
implies that either y∗ < min M̃(x∗) or y∗ > max M̃(x∗).
Suppose y∗ < min M̃(x∗). By the definition of M̃ and the
intervals in (8), we can find a point x0 < x∗ with y0 =
M(x0) such that y∗ < y0 ≤ min M̃(x∗). But since M ′ is an
extension of M , this implies that y0 ∈ M ′(x0), violating the
monotonicity of M ′. It can be shown by a similar argument
that if y∗ > max M̃(x∗), M ′ cannot be monotone. Thus there
exists no maximal monotone extension of M other than M̃ .

Proof of Prop. 6. Let M− and M+ be defined as,

M− = lim
x→−∞

(
infM(x)

)
, M+ = lim

x→∞

(
supM(x)

)
.

Consider an interval I ⊂ R, whose interior is (M−,M+). If
M− ∈ M(x) for any x, then include M− in I , otherwise
exclude it. Similarly, if M+ ∈ M(x) for any x, then include
M+ in I , otherwise exclude it. This construction, along with
condition (ii) in Prop. 3, implies that,
(a) if y ∈ I , then there exists x such that y ∈M(x),
(b) if y /∈ I , then there is no x such that y ∈M(x).
But these are equivalent to,
(a) if y ∈ I , then there exists x such that x ∈ M−1(y), or

that M−1(y) is non-empty,
(b) if y /∈ I , then M−1(y) = ∅.


