TEL 502E - Detection and Estimation Theory

Spring 2014

Instructors:	Ilker Bayram ibayram@itu.edu.tr
Class Meets:	Tuesday, $9.30-12.30$, EEB 5307
Textbook:	Fundamentals of Statistical Signal Processing (Vols. I,II), S. M. Kay, Prentice Hall.
Supplementary : An Introduction to Signal Detection and Estimation, H. V. Poor, Springer.	
Webpage :	There's a 'ninova' page, please log in and check.
Grading:	Homeworks (10\%), Midterm exam (40\%), Final Exam (50\%).
Attendance :	You need to attend at least 70% of the lectures to sit for the final exam.

Tentative Course Outline

(1) Review of probability theory
(2) Simple Hypothesis Testing, the Neyman Pearson Lemma
(3) Bayesian Tests, Multiple Hypothesis Testing
(4) The detection problem under different scenarios
(5) The estimation problem, minimum variance unbiased estimators
(6) The Cramér-Rao bound, sufficient statistics, Rao-Blackwell Theorem
(7) Linear Estimators, maximum likelihood estimation
(8) Bayesian estimation, minimum mean square estimators, maximum a posteriori estimators
(9) The innovations process, Wiener filtering, recursive least squares, the Kalman filter

TEL502E - Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf $f_{X}(t)$ (that is, $f_{X}(t)=0$ for $t<0$). Show that, for any $n>0$ and $s>0$,

$$
P(\{X \geq s\}) \leq \frac{\mathbb{E}\left(X^{n}\right)}{s^{n}}
$$

(b) Using part (a), show that for an arbitrary random variable Y with $\mathbb{E}(Y)=\mu$,

$$
P(\{\mu-\epsilon \leq Y \leq \mu+\epsilon\}) \geq 1-\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

(c) Suppose that X_{1}, X_{2}, \ldots is a sequence of iid random variables with $\mathbb{E}\left(X_{i}\right)=\mu, \operatorname{var}\left(X_{i}\right)=\sigma^{2}$. Also let,

$$
Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Compute $\mathbb{E}\left(Z_{n}\right)$ and $\operatorname{var}\left(Z_{n}\right)$.
(d) Show that

$$
\lim _{n \rightarrow \infty} P\left(\left\{\mu-\epsilon<Z_{n}<\mu+\epsilon\right\}\right)=1
$$

for any $\epsilon>0$.
Solution. (a) Keeping in mind that $s>0$, we have,

$$
\begin{aligned}
P(\{X \geq s\}) & =\int_{s}^{\infty} f_{X}(t) d t \\
& \leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) d t+\int_{s}^{\infty} f_{X}(t) d t \\
& \leq \int_{0}^{s} \frac{t^{n}}{s} f_{X}(t) d t+\int_{s}^{\infty} \frac{t^{n}}{s^{n}} f_{X}(t) d t \\
& =\frac{\mathbb{E}\left(X^{n}\right)}{s^{n}}
\end{aligned}
$$

This inequality is known as Markov's inequality.
(b) Using Y suppose we define a new random variable as $Z=|Y-\mu|$. Then, using Markov's inequality with $n=2$, we have,

$$
P(\{Z \geq \epsilon\}) \leq \frac{\mathbb{E}\left(Z^{2}\right)}{\epsilon^{2}}=\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

Observe now that

$$
P(\{Z \geq \epsilon\})+P(\{Z<\epsilon\})=1
$$

since the two events partition the sample space. This implies,

$$
P(\{Z<\epsilon\}) \geq 1-\frac{\operatorname{var}(Y)}{\epsilon^{2}}
$$

But now observe that

$$
\{Z<\epsilon\}=\{|Y-\mu|<\epsilon\}=\{-\epsilon<Y-\mu<\epsilon\}=\{\mu-\epsilon \leq Y \leq \mu+\epsilon\}
$$

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev's inequality.
(c) First,

$$
\mathbb{Z}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right)=\mu
$$

Now, note when the random variables are independent, we can add their variances. Thus,

$$
\operatorname{var}\left(Z_{n}\right)=\sum_{i=1}^{n} \operatorname{var}\left(X_{i} / n\right)=\sum_{i=1}^{n} \frac{\sigma^{2}}{n^{2}}=\frac{\sigma^{2}}{n} .
$$

(d) Since $\mathbb{E}\left(Z_{n}\right)=\mu$, we can use the result of part (b). That gives,

$$
P\left(\left\{\mu-\epsilon<Z_{n}<\mu+\epsilon\right\}\right) \geq 1-\frac{\sigma^{2}}{\epsilon^{2} n}
$$

Letting $n \rightarrow \infty$, the right hand side converges to 1 and the claim follows.
2. (a) Show that if $\operatorname{var}(Y)=0$, then $P(\{Y=\mathbb{E}(Y)\})=1$.
(b) Show that if $\mathbb{E}\left(Y^{2}\right)=0$, then $P(\{Y=0\})=1$.

Solution. (a) Let A be the event of interest defined as,

$$
A=\{Y=\mathbb{E}(Y)\}
$$

Instead of $P(A)$, we will compute the $P\left(A^{c}\right)$. Now observe that,

$$
A^{c}=\{|Y-\mathbb{E}(Y)|>0\}=\cup_{n=1}^{\infty} \underbrace{\{|Y-\mathbb{E}(Y)|>1 / n\}}_{B_{n}} .
$$

But by part (b) of Question-1, we have that $P\left(B_{n}\right)=0$. Therefore,

$$
P\left(A^{c}\right) \leq \sum_{n=1}^{\infty} P\left(B_{n}\right)=0 .
$$

Since $P\left(A^{c}\right) \geq 0$ by definition, it follows that $P\left(A^{c}\right)=0$. Thus, $P(A)=1-P\left(A^{c}\right)=1$.
(b) Since $\operatorname{var}(Y)=\mathbb{E}\left(Y^{2}\right)-(\mathbb{E}(Y))^{2} \geq 0$, the condition ' $\mathbb{E}\left(Y^{2}\right)=0$ ' implies that $\mathbb{E}(Y)=0$. The desired equality follows therefore follows from part (a).
3. Suppose X is a discrete random variable, taking values on the set of integers \mathbb{Z}. Suppose we are testing whether X is distributed according to the probability mass function (PMF) $P_{0}(t)$ (this is the null hypothesis) or it's distributed according to the PMF $P_{1}(t)$ (this is the alternative hypothesis). We somehow form the acceptance region $C \subset \mathbb{Z}$ such that if a realization of X, say x falls in C, we accept the null hypothesis, and reject it otherwise. Also, let $p_{I}(C)$ and $p_{I I}(C)$ denote the probabilities of type-I and type-II errors of this test. Below, the parts (a) and (b) are independent of each other.
(a) Suppose we discover that for some $r \in(\mathbb{Z} \backslash C)$ and $a_{1}, a_{2}, \ldots a_{n} \in C$,
(i) $P_{0}(r)=\sum_{i=1}^{n} P_{0}\left(a_{i}\right)$, and
(ii) $\left(P_{0}(r) / P_{1}(r)\right)>\left(P_{0}\left(a_{i}\right) / P_{1}\left(a_{i}\right)\right)$ for $i=1,2, \ldots, n$.

Based on this observation, we decide to update the acceptance region and use $D=C \cup\{r\} \backslash\left\{a_{1}, \ldots, a_{n}\right\}$ as the acceptance region (i.e., we remove a_{i} 's and include r in the new acceptance region). Let $p_{I}(D)$ and $p_{I I}(D)$ denote the type-I and type-II error probabilities for this updated test. Show that $p_{I}(D) \leq p_{I}(C)$, and $p_{I I}(D)<p_{I I}(C)$.
(b) Suppose we find that for any $r \in\left(\mathbb{Z} \cap C^{c}\right)$, and $a \in C$, the inequality

$$
\begin{equation*}
\frac{P_{0}(r)}{P_{1}(r)}<\frac{P_{0}(a)}{P_{1}(a)} \tag{1}
\end{equation*}
$$

is satisfied. Consider now another test than the one described above with an acceptance region given as D, whose type-I and type-II error probabilities are given as $p_{I}(D)$ and $p_{I I}(D)$ respectively. Show that if $p_{I}(D) \leq p_{I}(C)$, then $p_{I}(D)>p_{I I}(D)$.
Solution. Notice that, in this setting, for an acceptance region denoted as C, the type-I and type-II error probabilities are given by

$$
p_{I}(C)=\sum_{x \in \mathbb{Z} \cap C^{c}} P_{0}(x), \quad p_{I I}(C)=\sum_{x \in C} P_{1}(x)
$$

(a) First, observe that, by condition (i), we have,

$$
p_{I}(D)-p_{I}(C)=\sum_{z \in \mathbb{Z} \cap D^{c}} P_{0}(z)-\sum_{z \in \mathbb{Z} \cap C^{c}} P_{0}(z)=\sum_{i=1}^{n} P_{0}\left(a_{i}\right)-P_{0}(r)=0
$$

Rewriting (ii) as,

$$
\frac{P_{1}\left(a_{i}\right)}{P_{1}(r)}>\frac{P_{0}\left(a_{i}\right)}{P_{0}(r)}, \text { for } i=1,2, \ldots, n
$$

and summing over i, we obtain,

$$
\frac{\sum_{i=1}^{n} P_{1}\left(a_{i}\right)}{P_{1}(r)}>\frac{\sum_{i=1}^{n} P_{0}\left(a_{i}\right)}{P_{0}(r)}=1,
$$

where we made use of (i) again. Now observe that,

$$
p_{I I}(D)-p_{I I}(C)=\sum_{z \in D} P_{1}(z)-\sum_{z \in C} P_{1}(z)=P_{1}(r)-\sum_{i=1}^{n} P_{1}\left(a_{i}\right)<0 .
$$

(b) Suppose $p_{I}(D) \leq p_{I}(c)$. This implies,

$$
p_{I}(D)-p_{I}(C)=\sum_{x \in \mathbb{Z} \cap D^{c}} P_{0}(x)-\sum_{x \in \mathbb{Z} \cap C^{c}} P_{0}(x)=\sum_{x \in D^{c} \cap C} P_{0}(x)-\sum_{x \in C^{c} \cap D} P_{0}(x) \leq 0,
$$

or

$$
\begin{equation*}
\frac{\sum_{x \in C^{c} \cap D} P_{0}(x)}{\sum_{x \in D^{c} \cap C} P_{0}(x)} \geq 1 . \tag{2}
\end{equation*}
$$

Now observe similarly that

$$
p_{I I}(D)-p_{I I}(C)=\sum_{x \in D} P_{1}(x)-\sum_{x \in C} P_{1}(x)=\sum_{x \in D \cap C^{c}} P_{1}(x)-\sum_{x \in C \cap D^{c}} P_{1}(x) .
$$

Thus, if we can show that

$$
\begin{equation*}
\frac{\sum_{x \in D \cap C^{c}} P_{1}(x)}{\sum_{x \in C \cap D^{c}} P_{1}(x)}>1, \tag{3}
\end{equation*}
$$

we are done.
For this, we first rewrite (1) in a different form. Note that if $x \in C^{c}$ and $c \in C$, then

$$
P_{1}(c) P_{0}(x)<P_{0}(c) P_{1}(x) .
$$

Fixing $c \in C$, we obtain,

$$
P_{1}(c)\left(\sum_{x \in D \cap C^{c}} P_{0}(x)\right)<P_{0}(c)\left(\sum_{x \in D \cap C^{c}} P_{1}(x)\right) .
$$

Now taking the terms inside the parentheses as fixed, we can write,

$$
\left(\sum_{c \in D^{c} \cap C} P_{1}(c)\right)\left(\sum_{x \in D \cap C^{c}} P_{0}(x)\right)<\left(\sum_{c \in D^{c} \cap C} P_{0}(c)\right)\left(\sum_{x \in D \cap C^{c}} P_{1}(x)\right) .
$$

Rewriting and using (2), we obtain (3) :

$$
\frac{\sum_{x \in D \cap C^{c}} P_{1}(x)}{\sum_{x \in D^{c} \cap C} P_{1}(x)}>\frac{\sum_{x \in D \cap C^{c}} P_{0}(x)}{\sum_{x \in D^{c} \cap C} P_{0}(x)} \geq 1 .
$$

Notice that throughout, I assumed that $P_{i}(x)$ is non-zero as long as $x \in \mathbb{Z}$. I leave it to you to consider how to modify the argument if $P_{i}(x)=0$ from some x.

TEL502E - Homework 2

Due 11.03.2014

1. Consider a hypothesis testing problem as follows. We are given the realisation of a random vector x of length k. There are two hypothesis concerning x, namely H_{0} and H_{1}, which suggest that x_{i} 's are of the form

$$
\begin{aligned}
& H_{0}: x_{i}=n_{i}, \\
& H_{1}: x_{i}=s_{i}+n_{i},
\end{aligned}
$$

where $n_{1}, \ldots n_{k}$ is the realisation of a random vector with iid zero-mean Gaussian components with variance σ^{2} and s_{1}, \ldots, s_{k} is a known constant vector. We have seen in class that the Neyman-Pearson test for this scenario employs the test statistic $T(x)=\sum_{i=1}^{k} s_{i} x_{i}$ and is of the form

$$
\begin{cases}\text { If } T(x)<\gamma, & \text { then decide } H_{0} \\ \text { If } T(x) \geq \gamma, & \text { then decide } H_{1}\end{cases}
$$

Recall that the $Q(\cdot)$ function is defined in terms of the pdf of a standard Gaussian random variable $f(\cdot)$ as

$$
Q(t)=\int_{t}^{\infty} f(s) d s=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} s^{2}\right) d s
$$

(a) Determine γ so that the probability of a Type-I error is α. Express this threshold in terms the $Q(\cdot)$ function.
(b) For the threshold computed in part (a), find the probability of a Type-II error.

Solution. (a) Recall that a Type-I error occurs when H_{0} is true but we decide H_{1}. This is equivalent to saying that the event $\left\{T^{\prime}<\gamma\right\}$ where X is assumed to be distributed as an iid Gaussian random vector where each component has variance σ^{2}. Now we need to determine how $T^{\prime}=\sum_{i} s_{i} X_{i}$ is distributed. Note that since T is a linear combination of zero-mean Gaussian random variables, it is also a zero-mean Gaussian random variable. Also, since $s_{i} X_{i}$'s are independent, the variances add (why?) and the variance of T^{\prime} is found to be $\sigma_{T}^{2}=\sigma^{2} \sum_{i} s_{i}^{2}=\sigma^{2} \varepsilon^{2}$, where ε^{2} denotes the energy of the deterministic signal s. Observe now that $\sigma_{T}^{-1} T^{\prime}$ is a standard Gaussian random variable. Thus, probability of a type-I error can be computed as,

$$
\begin{aligned}
P(\text { Type-I }) & =P\left\{T^{\prime}>\gamma\right\} \quad \text { under } H_{0} \\
& =P\left\{\sigma_{T}^{-1} T^{\prime}>\sigma_{T}^{-1} \gamma\right\} \quad \text { under } H_{0} \\
& =Q\left(\sigma_{T}^{-1} \gamma\right)
\end{aligned}
$$

If this probability is desired to be less than or equal to α, the γ value that minimizes the probability of a type-II error is, $\gamma=\sigma_{T} Q^{-1}(\alpha)$.
(b) For the threshold found in part (a), a type-II error occurs if the event $\{T<\gamma\}$ occurs while X is distributed as a random vector with iid entries where X_{i} is Gaussian with mean s_{i} and variance σ^{2} (this is what H_{1} claims). Under this hypothesis, we need to find how $T^{\prime}=\sum_{i} s_{i} X_{i}$ is distributed. Arguing as in (a), T^{\prime} is a Gaussian r.v. But this time, the mean is $\sum_{i} s_{i}^{2}=\varepsilon^{2}$ (why?) and the variance is $\sigma^{2} \sum_{i} s_{i}^{2}=\sigma^{2} \varepsilon^{2}=\sigma_{T}^{2}$ (as in part (a)). Observe in this case that ' $\sigma_{T}^{-1}\left(T-\varepsilon^{2}\right.$)' is a standard Gaussian random variable. Thus,

$$
\begin{aligned}
P(\text { Type-II }) & =P\left\{T^{\prime}<\gamma\right\} \quad \text { under } H_{1} \\
& =P\left\{\sigma_{T}^{-1}\left(T^{\prime}-\varepsilon^{2}\right)<\sigma_{T}^{-1}\left(\gamma-\varepsilon^{2}\right)\right\} \quad \text { under } H_{1} \\
& =1-Q\left(\sigma_{T}^{-1}\left(\gamma-\varepsilon^{2}\right)\right) \\
& =1-Q\left(Q^{-1}(\alpha)-\frac{\varepsilon}{\sigma}\right)
\end{aligned}
$$

2. Let us slightly complicate the problem in Question-1 by introducing another constant signal, namely $z=\left(z_{1}, \ldots z_{k}\right)$, into the scenario. Suppose that the two hypothesis are now of the form,

$$
\begin{aligned}
& H_{0}: x_{i}=z_{i}+n_{i}, \\
& H_{1}: x_{i}=s_{i}+n_{i},
\end{aligned}
$$

where the rest of the variables are as described in Question-1.
(a) Find a test statistic $T^{\prime}(x)$ such that the Neyman-Pearson test is of the form

$$
\begin{cases}\text { If } T^{\prime}(x)<\gamma, & \text { then decide } H_{0} \\ \text { If } T^{\prime}(x) \geq \gamma, & \text { then decide } H_{1}\end{cases}
$$

(b) For the test in part (a), determine the constant γ, in terms of the $Q(\cdot)$ function so that the probability of a Type-I error is equal to α.
(c) Determine the probability of a Type-II error for the threshold computed in part(b).

Solution. Given x, suppose we define the data vector $y=x-z$. Also, let $r=s-z$. Under this change of variables, notice that H_{0} and H_{1} can be expressed as,

$$
\begin{aligned}
& H_{0}: y_{i}=n_{i}, \\
& H_{1}: y_{i}=r_{i}+n_{i} .
\end{aligned}
$$

Thus, the problem is reduced to the problem in Question-1. All we need to do is to translate the results while paying attention to the change of variables.
(a) Note that under this change of variables, one can use

$$
\sum_{i} r_{i} y_{i}=\sum_{i}\left(s_{i}-z_{i}\right)\left(x_{i}-z_{i}\right)=\sum_{i}\left(s_{i}-z_{i}\right) x_{i}+\text { const. }
$$

as a statistic. Dropping the constant term, we find a test statistic given as $T^{\prime}=\sum_{i}\left(s_{i}-z_{i}\right) X_{i}$.
(b) Let $\varepsilon^{2}=\sum_{i}\left(s_{i}-z_{i}\right)^{2}$. Then, the best threshold is (see Question-1 part(a)), $\gamma=\sigma \varepsilon Q^{-1}(\alpha)$.
(c) In this case, for $\varepsilon=\sum_{i}\left(s_{i}-z_{i}\right)^{2}$, the probability of a type-II error is (see Question-1, part(b)),

$$
P(\text { Type-II })=1-Q\left(Q^{-1}(\alpha)-\frac{\varepsilon}{\sigma}\right)
$$

TEL502E - Homework 3

Due 22.04.2014

1. Suppose X_{1}, X_{2} are independent identically distributed random variables with a probability density function (pdf) given as,

$$
f(t)=\frac{1}{2} e^{-|t|}
$$

We make two observations y_{1}, y_{2}, related to realizations of X_{i} 's. Suppose there are two hypotheses concerning the observations

$$
\begin{aligned}
& H_{0}: y_{i}=x_{i}, \text { for } i=1,2, \\
& H_{1}: y_{i}=2 x_{i}, \text { for } i=1,2,
\end{aligned}
$$

where x_{i} 's are realizations of X_{i} 's.
(a) Find the pdf of Y_{1} under H_{1}.
(b) Find the Neyman-Pearson test for the given hypotheses. That is, find a test statistic $g\left(y_{1}, y_{2}\right)$ such that

$$
\begin{cases}\text { if } g\left(y_{1}, y_{2}\right)>\gamma, & \text { then we decide } H_{0} \\ \text { if } g\left(y_{1}, y_{2}\right) \leq \gamma, & \text { then we decide } H_{1}\end{cases}
$$

(c) For the test in part (b), find the threshold γ so that the probability of a Type-I error is α.
(Recall that we make a Type-I error if we decide H_{1} while H_{0} is true.)
Solution. (a) To write the pdf let us first find the cdf :

$$
F_{Y_{1}}(t)=P\left(Y_{1} \leq t\right)=P\left(2 X_{1} \leq t\right)=F_{X}(t / 2)
$$

Differentiating, we obtain,

$$
f_{Y_{1}}(t)=\frac{1}{2} f_{X}(t / 2)=\frac{1}{4} e^{-|t| / 2}
$$

(b) The LRT statistic for this problem is,

$$
T=\frac{f_{0}\left(y_{1}, y_{2}\right)}{f_{1}\left(y_{1}, y_{2}\right)}=\frac{1}{2} \exp \left(-\left(\left|y_{1}\right|+\left|y_{2}\right|\right) / 2\right)
$$

Note that the test is of the form,

$$
\begin{cases}\text { If } T \geq \beta, & \text { decide } H_{0} \\ \text { If } T<\beta, & \text { decide } H_{1}\end{cases}
$$

Taking logarithms, we find an equivalent test as,

$$
\begin{cases}\text { If }-\left(\left|y_{1}\right|+\left|y_{2}\right|\right) \geq \gamma, & \text { decide } H_{0} \\ \text { If }-\left(\left|y_{1}\right|+\left|y_{2}\right|\right)<\gamma, & \text { decide } H_{1}\end{cases}
$$

Therefore $g\left(y_{1}, y_{2}\right)=-\left(\left|y_{1}\right|+\left|y_{2}\right|\right)$ works.
(c) In order to evaluate the probability of error, we need to find the pdf pf the test statistic. Let us first find the pdf of $U_{1}=\left|Y_{1}\right|$. Note that the cdf of U_{1} is,

$$
F_{U_{1}}(t)=P\left(U_{1} \leq t\right)= \begin{cases}2 \int_{0}^{t} f_{Y_{1}}(s) d s, & \text { if } t \geq 0 \\ 0, & \text { if } t<0\end{cases}
$$

Differentiating with respect to t, we find the pdf of U_{1} as,

$$
f_{U_{1}}(t)= \begin{cases}2 f_{Y_{1}}(t)=e^{-|t|}, & \text { if } t \geq 0 \\ 0, & \text { if } t<0\end{cases}
$$

Now let $S=U_{1}+U_{2}$. Since U_{1} and U_{2} are independent (note that they are also identically distributed). The pdf of S can be found by convolving the pdfs of U_{1} and U_{2}.

$$
f_{S}(t)= \begin{cases}\int_{0}^{t} e^{-(t-s)} e^{-s} d s=t e^{-t}, & \text { if } t>0 \\ 0, & \text { if } t<0\end{cases}
$$

Now observe that

$$
\begin{aligned}
P(g>\gamma) & =P(S<-\gamma) \\
& =\int_{0}^{-\gamma} t e^{-t} d t \\
& =\left.\left(-t e^{-t}\right)\right|_{0} ^{-\gamma}+\int_{0}^{-\gamma} e^{-t} d t \\
& =\gamma e^{\gamma}+\left(1-e^{\gamma}\right)
\end{aligned}
$$

Therefore if

$$
h(\gamma)=1+(\gamma-1) e^{\gamma}=\alpha
$$

set $\gamma=h^{-1}(\alpha)$ (note that $h(\gamma)$ is invertible for $\gamma<0$).
2. Suppose we observe a signal x_{i} for $i=1,2, \ldots, k$. There are two hypothesis of the form,

$$
\begin{aligned}
& H_{0}: x_{i}=z_{i}+n_{i}, \\
& H_{1}: x_{i}=s_{i}+n_{i},
\end{aligned}
$$

where z_{i} and s_{i} are deterministic (and known signals) and n_{i} 's are realizations of iid Gaussian random variables with unit variance.
(a) Find a test statistic $T(x)$ such that the Neyman-Pearson test is of the form

$$
\begin{cases}\text { If } T(x)<\gamma, & \text { then decide } H_{0} \\ \text { If } T(x) \geq \gamma, & \text { then decide } H_{1}\end{cases}
$$

(b) Recall that the Q function is defined as,

$$
Q(t)=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

For the test in part (a), determine the constant γ, in terms of the $Q(\cdot)$ function so that the probability of a Type-I error is equal to α.
(c) Determine the probability of a Type-II error for the threshold computed in part(b).
(Recall that we make a Type-II error if we decide H_{0} while H_{1} is true.)
Solution. (a) Let f_{i}, denote pdf of the data under the hypothesis H_{i}. Then the LRT statistic is given by,

$$
\begin{aligned}
\frac{f_{0}}{f_{1}} & =\exp \left(-\sum_{i=1}^{n}\left[\left(x_{i}-z_{i}\right)^{2}-\left(x_{i}-s_{i}\right)^{2}\right]\right) \\
& =\exp \left(-\sum_{i=1}^{n}\left[2 x_{i}\left(s_{i}-z_{i}\right)+\left(s_{i}-z_{i}\right)^{2}\right]\right)
\end{aligned}
$$

Taking logarithms and discarding constanat terms, we find a test equivalent to the LRT as,

$$
\underbrace{\sum_{i=1}^{n} x_{i}\left(s_{i}-z_{i}\right)}_{T(x)}\left\{\begin{array}{lll}
<\gamma & \Rightarrow \text { decide } H_{0} \\
\geq \gamma & \Rightarrow \text { decide } H_{1}
\end{array}\right.
$$

(b) Note that under $H_{0}, T(X)$ is distributed as a Gaussian with mean $\mu=\sum_{i} z_{i}\left(s_{i}-z_{i}\right)$ and variance $\sigma^{2}=\sum_{i}\left(z_{i}-s_{i}\right)^{2}$. Therefore, the probability of a type-I error is,

$$
P(T>\gamma)=P\left(\frac{T-\mu}{\sigma}>\frac{\gamma-\mu}{\sigma}\right)=Q\left(\frac{\gamma-\mu}{\sigma}\right)
$$

If this is to be equal to α, the threshold γ should be,

$$
\gamma=Q^{-1}(\alpha) \sigma+\mu
$$

(c) Under $H_{1}, T(X)$ is distributed as a Gaussian with mean $\hat{\mu}=\sum_{i} s_{i}\left(s_{i}-z_{i}\right)$ and variance $\sigma^{2}=$ $\sum_{i}\left(z_{i}-s_{i}\right)^{2}$. Therefore, the probability of a type-II error is,

$$
P(T<\gamma)=P\left(\frac{T-\hat{\mu}}{\sigma}>\frac{\gamma-\hat{\mu}}{\sigma}\right)=1-Q\left(\frac{\gamma-\hat{\mu}}{\sigma}\right)=1-Q\left(Q^{-1}(\alpha)-\sqrt{\sum_{i=1}^{n}\left(z_{i}-s_{i}\right)^{2}}\right) .
$$

3. Let X_{1}, X_{2} be independent Gaussian random variables with the same mean θ but with different variances $\sigma_{1}^{2}, \sigma_{2}^{2}$. That is, the probability density functions of X_{1} and X_{2} are,

$$
\begin{aligned}
& f_{1}(t)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left(-\frac{(t-\theta)^{2}}{2 \sigma_{1}^{2}}\right) \\
& f_{2}(t)=\frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left(-\frac{(t-\theta)^{2}}{2 \sigma_{2}^{2}}\right)
\end{aligned}
$$

(a) Find an expression for the Cramér-Rao lower bound for θ (in terms of σ_{1}^{2} and σ_{2}^{2}).
(b) Find the uniformly minimum variance unbiased (UMVU) estimator for θ.

Solution. Note that the joint pdf of $X=\left(X_{1}, X_{2}\right)$ is the product of the two pdfs. We compute

$$
\begin{aligned}
\mathbb{E}\left(\left[\frac{\partial}{\partial \theta} \ln f\left(t_{1}, t_{2} ; \theta\right)\right]^{2}\right) & =\mathbb{E}\left(\left[\frac{1}{\sigma_{1}^{2}}\left(\theta-X_{1}\right)+\frac{1}{\sigma_{2}^{2}}\left(\theta-X_{2}\right)\right]^{2}\right) \\
& =\mathbb{E}\left(\frac{1}{\sigma_{1}^{4}}\left(\theta-X_{1}\right)^{2}+\frac{1}{\sigma_{2}^{4}}\left(\theta-X_{2}\right)^{2}\right) \\
& =\sigma_{1}^{-2}+\sigma_{2}^{-2}
\end{aligned}
$$

Therefore the CRLB is $\left(\sigma_{1}^{-2}+\sigma_{2}^{-2}\right)^{-1}$.
Note that we can write,

$$
\begin{aligned}
\frac{\partial}{\partial \theta} \ln f\left(X_{1}, X_{2} ; \theta\right) & =\underbrace{\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)}_{\sigma^{-2}} \theta-\frac{X_{1}}{\sigma_{1}^{2}}-\frac{X_{2}}{\sigma_{1}^{2}} \\
& =\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)[\theta-\underbrace{\left(\frac{\sigma^{2}}{\sigma_{1}^{2}} X_{1}+\frac{\sigma^{2}}{\sigma_{2}^{2}} X_{2}\right)}_{\hat{\theta}\left(X_{1}, X_{2}\right)}]
\end{aligned}
$$

Thus, $\hat{\theta}\left(X_{1}, X_{2}\right)$ must be the UMVUE.
4. Suppose X_{1}, X_{2}, X_{3} are independent random variables uniformly distributed on $[0, \theta]$. Recall that a random variable uniformly distributed on $[0, \theta]$ has pdf

$$
f(t)= \begin{cases}\theta^{-1}, & \text { if } t \in[0, \theta] \\ 0, & \text { if } t \notin[0, \theta]\end{cases}
$$

We are interested in the value of θ.
(a) A student suggests $\hat{\theta}=X_{1}+X_{2}+X_{3}$ as an estimator. Find out whether this estimator is biased or not. If it is biased, derive an unbiased estimator $\tilde{\theta}$ which is a function of $\hat{\theta}$ only (i.e., the other random variables do not appear in the new expression).
(b) An unbiased estimator for θ is $\bar{\theta}=X_{1}+X_{2}$. Compare the variances of $\bar{\theta}$ and $\tilde{\theta}$ that you found in part (a). Which would you prefer to use as an estimator of θ - and why?

Solution. (a) Note that $\mathbb{E}\left(X_{i}\right)=\theta / 2$. Therefore, $\mathbb{E}\left(X_{1}+X_{2}+X_{3}\right)=3 \theta / 2 \neq \theta$. Therefore $\hat{\theta}$ biased, but $\tilde{\theta}=2 \theta / 3$ is unbiased.
(b) Note that var $X_{i}=\theta^{2} / 12$. Since X_{i} 's are independent, we can add their variance to find $\operatorname{var}(\bar{\theta})=$ $\operatorname{var}\left(X_{1}\right)+\operatorname{var}\left(X_{2}\right)=\theta^{2} / 6$. Similarly, we find $\operatorname{var}(\tilde{\theta})=(4 / 9) \operatorname{var} X_{1}+(4 / 9) \operatorname{var} X_{2}+(4 / 9) \operatorname{var} X_{3}=\theta^{2} / 9$. I'd prefer $\tilde{\theta}$ over $\bar{\theta}$ because it has uniformly lower variance.

TEL 502E - Detection and Estimation Theory
Midterm Examination
25.03.2014
(25 pts) 1. Suppose X_{1}, X_{2} are independent identically distributed random variables with a probability density function (pdf) given as,
$f(t)=\frac{1}{2} e^{-|t|}$
We make two observations y_{1}, y_{2}, related to realizations of X_{i} 's. Suppose there are two hypotheses concerning the observations
$H_{0}: y_{i}=x_{i}$, for $i=1,2$,
$H_{1}: y_{i}=2 x_{i}$, for $i=1,2$,
where x_{i} 's are realizations of X_{i} 's.
(a) Find the pdf of Y_{1} under H_{1}.
(b) Find the Neyman-Pearson test for the given hypotheses. That is, find a test statistic $g\left(y_{1}, y_{2}\right)$ such that
$\begin{cases}\text { if } g\left(y_{1}, y_{2}\right)>\gamma, & \text { then we decide } H_{0}, \\ \text { if } g\left(y_{1}, y_{2}\right) \leq \gamma, & \text { then we decide } H_{1} .\end{cases}$
(c) For the test in part (b), find the threshold γ so that the probability of a Type-I error is α. (Recall that we make a Type-I error if we decide H_{1} while H_{0} is true.)
(25 pts) 2. Suppose we observe a signal x_{i} for $i=1,2, \ldots, k$. There are two hypothesis of the form,
$H_{0}: x_{i}=z_{i}+n_{i}$,
$H_{1}: x_{i}=s_{i}+n_{i}$,
where z_{i} and s_{i} are deterministic (and known signals) and n_{i} 's are realizations of iid Gaussian random variables with unit variance.
(a) Find a test statistic $T(x)$ such that the Neyman-Pearson test is of the form

$$
\begin{cases}\text { If } T(x)<\gamma, & \text { then decide } H_{0} \\ \text { If } T(x) \geq \gamma, & \text { then decide } H_{1}\end{cases}
$$

(b) Recall that the Q function is defined as,
$Q(t)=\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t$.
For the test in part (a), determine the constant γ, in terms of the $Q(\cdot)$ function so that the probability of a Type-I error is equal to α.
(c) Determine the probability of a Type-II error for the threshold computed in part(b). (Recall that we make a Type-II error if we decide H_{0} while H_{1} is true.)
(25 pts) 3. Let X_{1}, X_{2} be independent Gaussian random variables with the same mean θ but with different variances $\sigma_{1}^{2}, \sigma_{2}^{2}$. That is, the probability density functions of X_{1} and X_{2} are,
$f_{1}(t)=\frac{1}{\sqrt{2 \pi \sigma_{1}^{2}}} \exp \left(-\frac{(t-\theta)^{2}}{2 \sigma_{1}^{2}}\right)$,
$f_{2}(t)=\frac{1}{\sqrt{2 \pi \sigma_{2}^{2}}} \exp \left(-\frac{(t-\theta)^{2}}{2 \sigma_{2}^{2}}\right)$.
(a) Find an expression for the Cramér-Rao lower bound for θ (in terms of σ_{1}^{2} and σ_{2}^{2}).
(b) Find the uniformly minimum variance unbiased (UMVU) estimator for θ.
(25 pts) 4. Suppose X_{1}, X_{2}, X_{3} are independent random variables uniformly distributed on $[0, \theta]$. Recall that a random variable uniformly distributed on $[0, \theta]$ has pdf
$f(t)= \begin{cases}\theta^{-1}, & \text { if } t \in[0,1], \\ 0, & \text { if } t \notin[0,1] .\end{cases}$
We are interested in the value of θ.
(a) A student suggests $\hat{\theta}=X_{1}+X_{2}+X_{3}$ as an estimator. Find out whether this estimator is biased or not. If it is biased, derive an unbiased estimator $\tilde{\theta}$ which is a function of $\hat{\theta}$ only (i.e., the other random variables do not appear in the new expression).
(b) An unbiased estimator for θ is $\bar{\theta}=X_{1}+X_{2}$. Compare the variances of $\bar{\theta}$ and $\tilde{\theta}$ that you found in part (a). Which would you prefer to use as an estimator of θ - and why?

TEL 502E - Detection and Estimation Theory
Final Examination
23.05.2014

Student Name : \qquad

Student Num. : \qquad

5 Questions, 120 Minutes
Please Show Your Work for Full Credit!
(20 pts) 1. Consider a system as shown below, where a stochastic process s_{i} is modulated with a constant θ and then contaminated with additive noise w_{i} giving observations y_{i}, for $i=1,2, \ldots, n$.

Suppose that the samples s_{i} are independent Gaussian random variables with mean 1 and variance σ^{2}. Suppose also that w_{i} 's are independent zero-mean Gaussian random variables with variance β^{2}.
θ can take one of two values $\{0,1\}$. Let H_{0} denote the hypothesis that $\theta=0$, and H_{1} denote the hypothesis that $\theta=1$.
(a) Find the probability density function (pdf) of the observations y_{i} under H_{1}.
(b) Find the Neyman-Pearson test for testing H_{0} against H_{1}.
(20 pts) 2. Consider a discrete random variable X whose probability mass function (pmf) depends on a parameter θ, where $\theta \in\{0,1,2\}$. Suppose that X takes values in $\{0,1,2,3\}$ and its pmf for different values of θ, denoted by $P(x \mid \theta)$, is as given below.

x	$P(x \mid \theta=0)$	$P(x \mid \theta=1)$	$P(x \mid \theta=2)$
0	$1 / 8$	$1 / 4$	0
1	$1 / 4$	$1 / 2$	$1 / 3$
2	$3 / 8$	$1 / 8$	$1 / 3$
3	$1 / 4$	$1 / 8$	$1 / 3$

Please provide a brief explanation of your answers for full credit.
(a) Suppose we are given a realization of X as $x=1$. Find the maximum likelihood estimate (MLE) for θ.
(b) Suppose we are given two independent realizations of X as $x_{1}=1, x_{2}=2$. Find the MLE for θ.
(20 pts)
3. Consider a disk with an unknown radius r. We are interested in the area of the disk. For this, we measure the radius n times but each measurement contains some error. Specifically, suppose that the measurements are of the form $X_{i}=r+Z_{i}$ for $i=1,2, \ldots, n$, where Z_{i} 's are independent zero-mean Gaussian random variables with known variance σ^{2}.
(a) Find a sufficient statistic for r.
(b) A professor suggests that we use

$$
\hat{A}=\pi\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}\right)
$$

as an estimator of the area. Determine if \hat{A} is biased or not.
(c) Find the uniformly minimum variance unbiased estimator for the area of the disk.
4. Let X_{1}, X_{2} be independent Gaussian random variables with mean θ and variance 1. Also, let θ be a random variable uniformly distributed on $[0,1]$ - that is, the pdf of θ is given by,
$f_{\theta}(t)= \begin{cases}1, & \text { if } t \in[0,1], \\ 0, & \text { if } t \notin[0,1] .\end{cases}$
(a) Find the joint pdf of θ, X_{1}, X_{2}. That is, find $f_{\theta, X_{1}, X_{2}}\left(t, x_{1}, x_{2}\right)$.
(b) Find the maximum a posteriori (MAP) estimate of θ.
(c) Evaluate the estimator you found in part (b) if the data is as given below.
(i) $x_{1}=3 / 4, x_{2}=1$.
(ii) $x_{1}=1 / 2, x_{2}=2$.
(20 pts) 5. Suppose a discrete-time system produces data of the form
$X(n)=A_{0}+A_{1} n+Z_{n}$,
where A_{0}, A_{1} and Z_{n} are independent random variables. Assume that A_{0} and A_{1} are identically distributed with zero-mean and variance equal to σ^{2}. Also, suppose Z_{n} denotes a sequence of identically distributed zero-mean random variables with variance equal to β^{2}. Finally let X denote the samples at $n=0,1,2$, which are made available to us, that is, $X=\left[\begin{array}{lll}X(0) & X(1) & X(2)\end{array}\right]^{T}$.
(a) Find the covariance matrix of X, namely C.
(b) Find an expression for the linear minimum mean square estimate (LMMSE) of A_{0}, given the vector X. (Note : Do not try to invert C, just use C^{-1}.)
(c) Find an expression for the LMMSE of A_{1}, given the vector X.

