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Tentative Course Outline

(1) Review of probability theory

(2) Simple Hypothesis Testing, the Neyman Pearson Lemma

(3) Bayesian Tests, Multiple Hypothesis Testing

(4) The detection problem under di↵erent scenarios

(5) The estimation problem, minimum variance unbiased estimators

(6) The Cramér-Rao bound, su�cient statistics, Rao-Blackwell Theorem

(7) Linear Estimators, maximum likelihood estimation

(8) Bayesian estimation, minimum mean square estimators, maximum a posteriori estimators

(9) The innovations process, Wiener filtering, recursive least squares, the Kalman filter



TEL502E – Homework 1

Due 25.02.2014

1. (a) Suppose that X is a non-negative random variable with a pdf fX(t) (that is, fX(t) = 0 for t < 0).

Show that, for any n > 0 and s > 0,

P
�
{X � s}

�
 E(Xn

)

sn
.

(b) Using part (a), show that for an arbitrary random variable Y with E(Y ) = µ,

P
�
{µ� ✏  Y  µ+ ✏}

�
� 1� var(Y )

✏2
.

(c) Suppose that X1, X2, . . . is a sequence of iid random variables with E(Xi) = µ, var(Xi) = �2
. Also

let,

Zn =
1

n

nX

i=1

Xi.

Compute E(Zn) and var(Zn).

(d) Show that

lim
n!1

P
�
{µ� ✏ < Zn < µ+ ✏}

�
= 1,

for any ✏ > 0.

Solution. (a) Keeping in mind that s > 0, we have,

P
�
{X � s}

�
=

Z 1

s
fX(t) dt


Z s

0

tn

s
fX(t) dt+

Z 1

s
fX(t) dt


Z s

0

tn

s
fX(t) dt+

Z 1

s

tn

sn
fX(t) dt

=
E(Xn

)

sn
.

This inequality is known as Markov’s inequality.

(b) Using Y suppose we define a new random variable as Z = |Y � µ|. Then, using Markov’s inequality

with n = 2, we have,

P
�
{Z � ✏}

�
 E(Z2

)

✏2
=

var(Y )

✏2
.

Observe now that

P
�
{Z � ✏}

�
+ P

�
{Z < ✏}

�
= 1,

since the two events partition the sample space. This implies,

P
�
{Z < ✏}

�
� 1� var(Y )

✏2

But now observe that

{Z < ✏} = {|Y � µ| < ✏} = {�✏ < Y � µ < ✏} = {µ� ✏  Y  µ+ ✏}.

Thus the claim follows. This inequality (or an equivalent version) is known as Chebyshev’s inequality.

(c) First,

Zn =
1

n

nX

i=1

E(Xi) = µ.

Now, note when the random variables are independent, we can add their variances. Thus,

var(Zn) =

nX

i=1

var
�
Xi/n

�
=

nX

i=1

�2

n2
=

�2

n
.



(d) Since E(Zn) = µ, we can use the result of part (b). That gives,

P
�
{µ� ✏ < Zn < µ+ ✏}

�
� 1� �2

✏2 n
.

Letting n ! 1, the right hand side converges to 1 and the claim follows.

2. (a) Show that if var(Y ) = 0, then P
�
{Y = E(Y )}

�
= 1.

(b) Show that if E(Y 2
) = 0, then P

�
{Y = 0}

�
= 1.

Solution. (a) Let A be the event of interest defined as,

A = {Y = E(Y )}.

Instead of P (A), we will compute the P (Ac
). Now observe that,

Ac
= {|Y � E(Y )| > 0} = [1

n=1 {|Y � E(Y )| > 1/n}| {z }
Bn

.

But by part (b) of Question-1, we have that P (Bn) = 0. Therefore,

P (Ac
) 

1X

n=1

P (Bn) = 0.

Since P (Ac
) � 0 by definition, it follows that P (Ac

) = 0. Thus, P (A) = 1� P (Ac
) = 1.

(b) Since var(Y ) = E(Y 2
)�

�
E(Y )

�2 � 0, the condition ‘E(Y 2
) = 0’ implies that E(Y ) = 0. The desired

equality follows therefore follows from part (a).

3. Suppose X is a discrete random variable, taking values on the set of integers Z. Suppose we are testing

whether X is distributed according to the probability mass function (PMF) P0(t) (this is the null hypoth-
esis) or it’s distributed according to the PMF P1(t) (this is the alternative hypothesis). We somehow form

the acceptance region C ⇢ Z such that if a realization of X, say x falls in C, we accept the null hypothesis,

and reject it otherwise. Also, let pI(C) and pII(C) denote the probabilities of type-I and type-II errors of

this test. Below, the parts (a) and (b) are independent of each other.

(a) Suppose we discover that for some r 2 (Z\C) and a1, a2, . . . an 2 C,

(i) P0(r) =
Pn

i=1 P0(ai), and

(ii)
�
P0(r)

�
P1(r)

�
>
�
P0(ai)

�
P1(ai)

�
for i = 1, 2, . . . , n.

Based on this observation, we decide to update the acceptance region and useD = C[{r}\{a1, . . . , an}
as the acceptance region (i.e., we remove ai’s and include r in the new acceptance region). Let

pI(D) and pII(D) denote the type-I and type-II error probabilities for this updated test. Show that

pI(D)  pI(C), and pII(D) < pII(C).

(b) Suppose we find that for any r 2 (Z \ Cc
), and a 2 C, the inequality

P0(r)

P1(r)
<

P0(a)

P1(a)
(1)

is satisfied. Consider now another test than the one described above with an acceptance region given

as D, whose type-I and type-II error probabilities are given as pI(D) and pII(D) respectively. Show

that if pI(D)  pI(C), then pI(D) > pII(D).

Solution. Notice that, in this setting, for an acceptance region denoted as C, the type-I and type-II error

probabilities are given by

pI(C) =

X

x2Z\Cc

P0(x), pII(C) =

X

x2C

P1(x).

(a) First, observe that, by condition (i), we have,

pI(D)� pI(C) =

X

z2Z\Dc

P0(z)�
X

z2Z\Cc

P0(z) =
nX

i=1

P0(ai)� P0(r) = 0.

2



Rewriting (ii) as,

P1(ai)

P1(r)
>

P0(ai)

P0(r)
, for i = 1, 2, . . . , n,

and summing over i, we obtain,

Pn
i=1 P1(ai)

P1(r)
>

Pn
i=1 P0(ai)

P0(r)
= 1,

where we made use of (i) again. Now observe that,

pII(D)� pII(C) =

X

z2D

P1(z)�
X

z2C

P1(z) = P1(r)�
nX

i=1

P1(ai) < 0.

(b) Suppose pI(D)  pI(c). This implies,

pI(D)� pI(C) =

X

x2Z\Dc

P0(x)�
X

x2Z\Cc

P0(x) =
X

x2Dc\C

P0(x)�
X

x2Cc\D

P0(x)  0,

or

P
x2Cc\D P0(x)P
x2Dc\C P0(x)

� 1. (2)

Now observe similarly that

pII(D)� pII(C) =

X

x2D

P1(x)�
X

x2C

P1(x) =
X

x2D\Cc

P1(x)�
X

x2C\Dc

P1(x).

Thus, if we can show that

P
x2D\Cc P1(x)P
x2C\Dc P1(x)

> 1, (3)

we are done.

For this, we first rewrite (1) in a di↵erent form. Note that if x 2 Cc
and c 2 C, then

P1(c)P0(x) < P0(c)P1(x).

Fixing c 2 C, we obtain,

P1(c)

 
X

x2D\Cc

P0(x)

!
< P0(c)

 
X

x2D\Cc

P1(x)

!
.

Now taking the terms inside the parentheses as fixed, we can write,

 
X

c2Dc\C

P1(c)

!  
X

x2D\Cc

P0(x)

!
<

 
X

c2Dc\C

P0(c)

!  
X

x2D\Cc

P1(x)

!
.

Rewriting and using (2), we obtain (3) :

P
x2D\Cc P1(x)P
x2Dc\C P1(x)

>

P
x2D\Cc P0(x)P
x2Dc\C P0(x)

� 1.

Notice that throughout, I assumed that Pi(x) is non-zero as long as x 2 Z. I leave it to you to consider

how to modify the argument if Pi(x) = 0 from some x.
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TEL502E – Homework 2

Due 11.03.2014

1. Consider a hypothesis testing problem as follows. We are given the realisation of a random vector x of

length k. There are two hypothesis concerning x, namely H0 and H1, which suggest that xi’s are of the

form

H0 : xi = ni,

H1 : xi = si + ni,

where n1, . . . nk is the realisation of a random vector with iid zero-mean Gaussian components with

variance �
2
and s1, . . . , sk is a known constant vector. We have seen in class that the Neyman-Pearson

test for this scenario employs the test statistic T (x) =
Pk

i=1 si xi and is of the form

(
If T (x) < �, then decide H0

If T (x) � �, then decide H1.

Recall that the Q(·) function is defined in terms of the pdf of a standard Gaussian random variable f(·)
as

Q(t) =

Z 1

t
f(s) ds =

Z 1

t

1p
2⇡

exp

✓
�1

2
s
2

◆
ds

(a) Determine � so that the probability of a Type-I error is ↵. Express this threshold in terms the Q(·)
function.

(b) For the threshold computed in part (a), find the probability of a Type-II error.

Solution. (a) Recall that a Type-I error occurs when H0 is true but we decide H1. This is equivalent

to saying that the event {T 0
< �} where X is assumed to be distributed as an iid Gaussian random

vector where each component has variance �
2
. Now we need to determine how T

0
=

P
i si Xi is

distributed. Note that since T is a linear combination of zero-mean Gaussian random variables, it is

also a zero-mean Gaussian random variable. Also, since si Xi’s are independent, the variances add

(why?) and the variance of T
0
is found to be �

2
T = �

2
P

i s
2
i = �

2
"
2
, where "

2
denotes the energy of

the deterministic signal s. Observe now that �
�1
T T

0
is a standard Gaussian random variable. Thus,

probability of a type-I error can be computed as,

P (Type-I) = P{T 0
> �} under H0

= P{��1
T T

0
> �

�1
T �} under H0

= Q(�
�1
T �).

If this probability is desired to be less than or equal to ↵, the � value that minimizes the probability

of a type-II error is, � = �T Q
�1

(↵).

(b) For the threshold found in part (a), a type-II error occurs if the event {T < �} occurs while X is

distributed as a random vector with iid entries where Xi is Gaussian with mean si and variance �
2

(this is what H1 claims). Under this hypothesis, we need to find how T
0
=

P
i si Xi is distributed.

Arguing as in (a), T
0
is a Gaussian r.v. But this time, the mean is

P
i s

2
i = "

2
(why?) and the

variance is �
2
P

i s
2
i = �

2
"
2
= �

2
T (as in part (a)). Observe in this case that ‘�

�1
T (T � "

2
)’ is a

standard Gaussian random variable. Thus,

P (Type-II) = P{T 0
< �} under H1

= P{��1
T (T

0 � "
2
) < �

�1
T (� � "

2
)} under H1

= 1�Q
�
�
�1
T (� � "

2
)
�

= 1�Q

⇣
Q

�1
(↵)� "

�

⌘
.

2. Let us slightly complicate the problem in Question-1 by introducing another constant signal, namely

z = (z1, . . . zk), into the scenario. Suppose that the two hypothesis are now of the form,

H0 : xi = zi + ni,

H1 : xi = si + ni,

where the rest of the variables are as described in Question-1.



(a) Find a test statistic T
0
(x) such that the Neyman-Pearson test is of the form

(
If T

0
(x) < �, then decide H0

If T
0
(x) � �, then decide H1.

(b) For the test in part (a), determine the constant �, in terms of the Q(·) function so that the probability

of a Type-I error is equal to ↵.

(c) Determine the probability of a Type-II error for the threshold computed in part(b).

Solution. Given x, suppose we define the data vector y = x� z. Also, let r = s� z. Under this change

of variables, notice that H0 and H1 can be expressed as,

H0 : yi = ni,

H1 : yi = ri + ni.

Thus, the problem is reduced to the problem in Question-1. All we need to do is to translate the results

while paying attention to the change of variables.

(a) Note that under this change of variables, one can use

X

i

ri yi =

X

i

(si � zi) (xi � zi) =

X

i

(si � zi)xi + const.

as a statistic. Dropping the constant term, we find a test statistic given as T
0
=

P
i(si � zi)Xi.

(b) Let "
2
=

P
i(si � zi)

2
. Then, the best threshold is (see Question-1 part(a)), � = � "Q

�1
(↵).

(c) In this case, for " =
P

i(si � zi)
2
, the probability of a type-II error is (see Question-1, part(b)),

P (Type-II) = 1�Q

⇣
Q

�1
(↵)� "

�

⌘
.

2



TEL502E – Homework 3

Due 22.04.2014

1. Suppose X1, X2 are independent identically distributed random variables with a probability density
function (pdf) given as,

f(t) =
1

2
e
�|t|

.

We make two observations y1, y2, related to realizations of Xi’s. Suppose there are two hypotheses
concerning the observations

H0 : yi = xi, for i = 1, 2,

H1 : yi = 2xi, for i = 1, 2,

where xi’s are realizations of Xi’s.

(a) Find the pdf of Y1 under H1.

(b) Find the Neyman-Pearson test for the given hypotheses. That is, find a test statistic g(y1, y2) such
that

(
if g(y1, y2) > �, then we decide H0,

if g(y1, y2)  �, then we decide H1.

(c) For the test in part (b), find the threshold � so that the probability of a Type-I error is ↵.
(Recall that we make a Type-I error if we decide H1 while H0 is true.)

Solution. (a) To write the pdf let us first find the cdf :

FY1(t) = P (Y1  t) = P (2X1  t) = FX(t/2).

Di↵erentiating, we obtain,

fY1(t) =
1

2
fX(t/2) =

1

4
e
�|t|/2

.

(b) The LRT statistic for this problem is,

T =
f0(y1, y2)

f1(y1, y2)
=

1

2
exp
⇣
�
�
|y1|+ |y2|

�
/2
⌘

Note that the test is of the form,
(
If T � �, decide H0

If T < �, decide H1.

Taking logarithms, we find an equivalent test as,
(
If �

�
|y1|+ |y2|

�
� �, decide H0

If �
�
|y1|+ |y2|

�
< �, decide H1.

Therefore g(y1, y2) = �
�
|y1|+ |y2|

�
works.

(c) In order to evaluate the probability of error, we need to find the pdf pf the test statistic. Let us first
find the pdf of U1 = |Y1|. Note that the cdf of U1 is,

FU1(t) = P (U1  t) =

(
2
R t
0 fY1(s) ds, if t � 0,

0, if t < 0.

Di↵erentiating with respect to t, we find the pdf of U1 as,

fU1(t) =

(
2 fY1(t) = e

�|t|
, if t � 0,

0, if t < 0.



Now let S = U1+U2. Since U1 and U2 are independent (note that they are also identically distributed).
The pdf of S can be found by convolving the pdfs of U1 and U2.

fS(t) =

(R t
0 e

�(t�s)
e
�s

ds = t e
�t
, if t > 0,

0, if t < 0.

Now observe that

P (g > �) = P (S < ��)

=

Z ��

0
t e

�t
dt

= (�t e
�t)
����

0
+

Z ��

0
e
�t
dt

= � e
� + (1� e

�).

Therefore if

h(�) = 1 + (� � 1)e� = ↵,

set � = h
�1(↵) (note that h(�) is invertible for � < 0).

2. Suppose we observe a signal xi for i = 1, 2, . . . , k. There are two hypothesis of the form,

H0 : xi = zi + ni,

H1 : xi = si + ni,

where zi and si are deterministic (and known signals) and ni’s are realizations of iid Gaussian random
variables with unit variance.

(a) Find a test statistic T (x) such that the Neyman-Pearson test is of the form

(
If T (x) < �, then decide H0

If T (x) � �, then decide H1.

(b) Recall that the Q function is defined as,

Q(t) =

Z 1

t

1p
2⇡

e
�t2/2

dt.

For the test in part (a), determine the constant �, in terms of the Q(·) function so that the probability
of a Type-I error is equal to ↵.

(c) Determine the probability of a Type-II error for the threshold computed in part(b).
(Recall that we make a Type-II error if we decide H0 while H1 is true.)

Solution. (a) Let fi, denote pdf of the data under the hypothesis Hi. Then the LRT statistic is given
by,

f0

f1
= exp

 
�

nX

i=1

⇥
(xi � zi)

2 � (xi � si)
2
⇤
!

= exp

 
�

nX

i=1

⇥
2xi (si � zi) + (si � zi)

2
⇤
!

Taking logarithms and discarding constanat terms, we find a test equivalent to the LRT as,

nX

i=1

xi(si � zi)

| {z }
T (x)

(
< � ) decide H0,

� � ) decide H1.

2



(b) Note that under H0, T (X) is distributed as a Gaussian with mean µ =
P

i zi(si � zi) and variance
�
2 =

P
i(zi � si)2. Therefore, the probability of a type-I error is,

P (T > �) = P

✓
T � µ

�
>

� � µ

�

◆
= Q

✓
� � µ

�

◆
.

If this is to be equal to ↵, the threshold � should be,

� = Q
�1(↵)� + µ.

(c) Under H1, T (X) is distributed as a Gaussian with mean µ̂ =
P

i si(si � zi) and variance �
2 =P

i(zi � si)2. Therefore, the probability of a type-II error is,

P (T < �) = P

✓
T � µ̂

�
>

� � µ̂

�

◆
= 1�Q

✓
� � µ̂

�

◆
= 1�Q

0

@Q
�1(↵)�

vuut
nX

i=1

(zi � si)2

1

A .

3. Let X1, X2 be independent Gaussian random variables with the same mean ✓ but with di↵erent variances
�
2
1 , �

2
2 . That is, the probability density functions of X1 and X2 are,

f1(t) =
1p
2⇡ �

2
1

exp

✓
� (t� ✓)2

2�2
1

◆
,

f2(t) =
1p
2⇡ �

2
2

exp

✓
� (t� ✓)2

2�2
2

◆
.

(a) Find an expression for the Cramér-Rao lower bound for ✓ (in terms of �2
1 and �

2
2).

(b) Find the uniformly minimum variance unbiased (UMVU) estimator for ✓.

Solution. Note that the joint pdf of X = (X1, X2) is the product of the two pdfs. We compute

E

0

@
"
@

@✓
ln f(t1, t2; ✓)

#21

A = E

0

@
"
1

�
2
1

(✓ �X1) +
1

�
2
2

(✓ �X2)

#21

A

= E
✓

1

�
4
1

(✓ �X1)
2 +

1

�
4
2

(✓ �X2)
2

◆

= �
�2
1 + �

�2
2 .

Therefore the CRLB is
�
�
�2
1 + �

�2
2

��1
.

Note that we can write,

@

@✓
ln f(X1, X2; ✓) =

✓
1

�
2
1

+
1

�
2
2

◆

| {z }
��2

✓ � X1

�
2
1

� X2

�
2
1

=

✓
1

�
2
1

+
1

�
2
2

◆

2

66664
✓ �

✓
�
2

�
2
1

X1 +
�
2

�
2
2

X2

◆

| {z }
✓̂(X1,X2)

3

77775
.

Thus, ✓̂(X1, X2) must be the UMVUE.

4. Suppose X1, X2, X3 are independent random variables uniformly distributed on [0, ✓]. Recall that a
random variable uniformly distributed on [0, ✓] has pdf

f(t) =

(
✓
�1

, if t 2 [0, ✓],

0, if t /2 [0, ✓].

We are interested in the value of ✓.

(a) A student suggests ✓̂ = X1 +X2 +X3 as an estimator. Find out whether this estimator is biased or
not. If it is biased, derive an unbiased estimator ✓̃ which is a function of ✓̂ only (i.e., the other random
variables do not appear in the new expression).

3



(b) An unbiased estimator for ✓ is ✓̄ = X1+X2. Compare the variances of ✓̄ and ✓̃ that you found in part
(a). Which would you prefer to use as an estimator of ✓ – and why?

Solution. (a) Note that E(Xi) = ✓/2. Therefore, E(X1 +X2 +X3) = 3✓/2 6= ✓. Therefore ✓̂ biased, but
✓̃ = 2✓/3 is unbiased.

(b) Note that varXi = ✓
2
/12. Since Xi’s are independent, we can add their variance to find var(✓̄) =

var(X1)+var(X2) = ✓
2
/6. Similarly, we find var(✓̃) = (4/9) varX1+(4/9) varX2+(4/9) varX3 = ✓

2
/9.

I’d prefer ✓̃ over ✓̄ because it has uniformly lower variance.

4



TEL 502E – Detection and Estimation Theory

Midterm Examination

25.03.2014

1. Suppose X1, X2 are independent identically distributed random variables with a probability density(25 pts)
function (pdf) given as,

f(t) =
1

2
e
�|t|

We make two observations y1, y2, related to realizations of Xi’s. Suppose there are two hypotheses
concerning the observations

H0 : yi = xi, for i = 1, 2,

H1 : yi = 2xi, for i = 1, 2,

where xi’s are realizations of Xi’s.

(a) Find the pdf of Y1 under H1.

(b) Find the Neyman-Pearson test for the given hypotheses. That is, find a test statistic g(y1, y2) such
that
(
if g(y1, y2) > �, then we decide H0,

if g(y1, y2)  �, then we decide H1.

(c) For the test in part (b), find the threshold � so that the probability of a Type-I error is ↵.
(Recall that we make a Type-I error if we decide H1 while H0 is true.)

2. Suppose we observe a signal xi for i = 1, 2, . . . , k. There are two hypothesis of the form,(25 pts)

H0 : xi = zi + ni,

H1 : xi = si + ni,

where zi and si are deterministic (and known signals) and ni’s are realizations of iid Gaussian random
variables with unit variance.

(a) Find a test statistic T (x) such that the Neyman-Pearson test is of the form

(
If T (x) < �, then decide H0

If T (x) � �, then decide H1.

(b) Recall that the Q function is defined as,

Q(t) =

Z 1

t

1p
2⇡

e
�t2/2

dt.

For the test in part (a), determine the constant �, in terms of the Q(·) function so that the probability
of a Type-I error is equal to ↵.

(c) Determine the probability of a Type-II error for the threshold computed in part(b).
(Recall that we make a Type-II error if we decide H0 while H1 is true.)



3. Let X1, X2 be independent Gaussian random variables with the same mean ✓ but with di↵erent variances(25 pts)
�
2
1 , �

2
2 . That is, the probability density functions of X1 and X2 are,

f1(t) =
1p
2⇡ �

2
1

exp

✓
� (t� ✓)2

2�2
1

◆
,

f2(t) =
1p
2⇡ �

2
2

exp

✓
� (t� ✓)2

2�2
2

◆
.

(a) Find an expression for the Cramér-Rao lower bound for ✓ (in terms of �2
1 and �

2
2).

(b) Find the uniformly minimum variance unbiased (UMVU) estimator for ✓.

4. Suppose X1, X2, X3 are independent random variables uniformly distributed on [0, ✓]. Recall that a(25 pts)
random variable uniformly distributed on [0, ✓] has pdf

f(t) =

(
✓
�1

, if t 2 [0, 1],

0, if t /2 [0, 1].

We are interested in the value of ✓.

(a) A student suggests ✓̂ = X1 +X2 +X3 as an estimator. Find out whether this estimator is biased or
not. If it is biased, derive an unbiased estimator ✓̃ which is a function of ✓̂ only (i.e., the other random
variables do not appear in the new expression).

(b) An unbiased estimator for ✓ is ✓̄ = X1+X2. Compare the variances of ✓̄ and ✓̃ that you found in part
(a). Which would you prefer to use as an estimator of ✓ – and why?
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1. Consider a system as shown below, where a stochastic process si is modulated with a constant(20 pts)

✓ and then contaminated with additive noise wi giving observations yi, for i = 1, 2, . . . , n.

si

✓ wi

yi

Suppose that the samples si are independent Gaussian random variables with mean 1 and vari-

ance �
2. Suppose also that wi’s are independent zero-mean Gaussian random variables with

variance �
2.

✓ can take one of two values {0, 1}. Let H0 denote the hypothesis that ✓ = 0, and H1 denote

the hypothesis that ✓ = 1.

(a) Find the probability density function (pdf) of the observations yi under H1.

(b) Find the Neyman-Pearson test for testing H0 against H1.

2. Consider a discrete random variable X whose probability mass function (pmf) depends on a(20 pts)

parameter ✓, where ✓ 2 {0, 1, 2}. Suppose that X takes values in {0, 1, 2, 3} and its pmf for

di↵erent values of ✓, denoted by P (x|✓), is as given below.

x P (x|✓ = 0) P (x|✓ = 1) P (x|✓ = 2)

0 1/8 1/4 0

1 1/4 1/2 1/3

2 3/8 1/8 1/3

3 1/4 1/8 1/3

Please provide a brief explanation of your answers for full credit.

(a) Suppose we are given a realization of X as x = 1. Find the maximum likelihood estimate

(MLE) for ✓.

(b) Suppose we are given two independent realizations of X as x1 = 1, x2 = 2. Find the MLE

for ✓.



3. Consider a disk with an unknown radius r. We are interested in the area of the disk. For this,(20 pts)

we measure the radius n times but each measurement contains some error. Specifically, suppose

that the measurements are of the form Xi = r+Zi for i = 1, 2, . . . , n, where Zi’s are independent

zero-mean Gaussian random variables with known variance �
2.

(a) Find a su�cient statistic for r.

(b) A professor suggests that we use

Â = ⇡

 
1

n

nX

i=1

X
2
i

!

as an estimator of the area. Determine if Â is biased or not.

(c) Find the uniformly minimum variance unbiased estimator for the area of the disk.

4. Let X1, X2 be independent Gaussian random variables with mean ✓ and variance 1. Also, let ✓(20 pts)

be a random variable uniformly distributed on [0, 1] – that is, the pdf of ✓ is given by,

f✓(t) =

(
1, if t 2 [0, 1],

0, if t /2 [0, 1].

(a) Find the joint pdf of ✓, X1, X2. That is, find f✓,X1,X2(t, x1, x2).

(b) Find the maximum a posteriori (MAP) estimate of ✓.

(c) Evaluate the estimator you found in part (b) if the data is as given below.

(i) x1 = 3/4, x2 = 1.

(ii) x1 = 1/2, x2 = 2.

5. Suppose a discrete-time system produces data of the form(20 pts)

X(n) = A0 +A1 n+ Zn,

where A0, A1 and Zn are independent random variables. Assume that A0 and A1 are identically

distributed with zero-mean and variance equal to �
2. Also, suppose Zn denotes a sequence of

identically distributed zero-mean random variables with variance equal to �
2. Finally let X

denote the samples at n = 0, 1, 2, which are made available to us, that is,

X =
h
X(0) X(1) X(2)

iT
.

(a) Find the covariance matrix of X, namely C.

(b) Find an expression for the linear minimum mean square estimate (LMMSE) of A0, given

the vector X. (Note : Do not try to invert C, just use C
�1.)

(c) Find an expression for the LMMSE of A1, given the vector X.


